技术心得:基于AR9331(MIPS架构)分析系统启动过程(uboot)

简介: 技术心得:基于AR9331(MIPS架构)分析系统启动过程(uboot)

前提:


1.AR9331是基于MIPS 24K CPU的一款WIFI1X1芯片,其SDK采用uboot作为引导。AR9331中定义的基地址是:0x9f00,0000


2.MIPS24K芯片,将固定的起始地址,规定为0xBF00,0000(见 和有提到)


此地址属于MIPS的KSEG1的地址范围内(见其实际的物理地址是:0x1F00,0000(=0xBF00,0000 & 0x1FFF,FFFF)


A.


uboot在编译时,会经历如下动作:


bootstrap: depend version $(SUBDIRS) $(OBJS_BOOTSTRAP) $(LIBS_BOOTSTRAP) $(LDSCRIPT_BOOTSTRAP)


UNDEF_SYM=$(OBJDUMP) -x $(LIBS_BOOTSTRAP) |sed -n -e 's/.*\(__u_boot_cmd_.*\)/-u\1/p'|sort|uniq;\


$(LD) $(LDFLAGS_BOOTSTRAP【xxx1】 ) $$UNDEF_SYM $(OBJS_BOOTSTRAP) \

--start-group $(LIBS_BOOTSTRAP) --end-group $(PLATFORM_LIBS) \

-Map bootstrap.map -o bootstrap

u-boot: depend version $(SUBDIRS) $(OBJS) $(LIBS) $(LDSCRIPT)

UNDEF_SYM=`$(OBJDUMP) -x $(LIBS) |sed -n -e 's/.*\(__u_boot_cmd_.*\)/-u\1/p'|sort|uniq`;\

$(LD) $(LDFLAGS)【xxx2】 $$UNDEF_SYM $(OBJS) $(BOARD_EXTRA_OBJS) \


--start-group $(LIBS) --end-group $(PLATFORM_LIBS) \


-Map u-boot.map -o u-boot


以及


u-boot.lzimg: $(obj)u-boot.bin System.map


@$(LZMA) e $(obj)u-boot.bin u-boot.bin.lzma


@./tools/mkimage -A mips -T firmware -C lzma \


-a 0x$(shell grep "T _start" $(TOPDIR)/System.map | awk '{ printf "%s", $$1 }') \

-e 0x$(shell grep "T _start" $(TOPDIR)/System.map | awk '{ printf "%s", $$1 }') \


【xxx3】 -n 'u-boot image' -d $(obj)u-boot.bin.lzma $@


也就是说,在编译的时候,就决定了tuboot需要在0x9f000000处被引导启动,也就是说,烧写tuboot时,需要烧到0x9f000000【xxx4】 处。


而0x9F00,0000属于KSEG0范围,其实际对应的物理地址也是0x1F00,0000【xxx5】 (=0x9F00,0000&0x7FFF,FFFF)


B. Uboot编译连接脚本文件,在ap121上,就是/boot/u-boot/board/ar7240/ap121/u-boot.lds


此文件的作用:


2 连接脚本是用来描述输出文件的内存布局;源代码经过编译器编译后包含如下段:


n 正文段text:包含程序的指令代码;


n 数据段data:包含固定的数据,如常量和字符串;


n 未初始化数据段:包含未初始化的变量、数组等。


连接器的任务是将多个编译后的文件的text、data和bass等段连接在一起;而连接脚本文件就是告诉连接器从什么地址(运行时地址)开始放置这些段


2 此文件中,最要关注的是.text字段。一切从这里开始


C. 先运行bootstrap,然后再运行uboot


在\boot\u-boot\board\ar7240\ap121\u-boot-bootstrap.lds,有定义:ENTRY(_start_bootstrap)


在\boot\u-boot\board\ar7240\ap121\u-boot.lds,有定义:ENTRY(_start)


而在boot\u-boot\board\ar7240\ap121\config.mk,有定义:


# ROM version


ifeq ($(COMPRESSED_UBOOT),1)


TEXT_BASE = 0x80010000 #对应uboot的TEXT正文地址,见u-boot.map的_start


BOOTSTRAP_TEXT_BASE = 0x9f000000 #对应bootstrap的TEXT正文地址,见bootstrap.map的_start_bootstrap


【xxx6】 else


TEXT_BASE = 0x9f000000


Endif


所以,先执行_start_bootstrap,再执行_start。那么,这两个在哪儿?


D. 在bootstrap.map中,可以看到:


.text 0x000000009f000000 0x3aa0


(.text)


.text 0x000000009f000000 0x8b0 cpu/mips/start_bootstrap.o


0x000000009f000000 _start_bootstrap


Address of section .text set to 0x9f000000


在u-boot.map中,可以看到:


.text 0x0000000080010000 0x17da0


(.text)


.text 0x0000000080010000 0x3350 cpu/mips/start.o


0x0000000080010030 relocate_code


0x0000000080010000 _start


Address of section .text set to 0x80010000


然后,在boot/u-boot/cpu/mips中,可以找到:start_bootstrap.S和start.S


这两个,就是真正执行_start_boostrap和_start的地方


start_bootstrap中,可以看到:bootstrap_board_init_f和bootstrap_board_init_r。最后,在bootstrap_board_init_r中,有:


addr = (char )(BOOTSTRAP_CFG_MONITOR_BASE + ((ulong)&uboot_end_data_bootstrap - dest_addr));


memmove (&header, (char )addr, sizeof(image_header_t));


以及:


data = addr + sizeof(image_header_t);/越过uboot的头,定位到uboot的净荷开始/


fn = ntohl(hdr->ih_load);/*定位位于hdr->ih_load位置的起止程序,并执行之。这个程序就是start/


(fn)(gd->ram_size);


可见,bootstrap中会定位并剥掉uboot的image_header_t的头,这样就会调位到start。


下面,分析_start


E. 在start.S中,可以看到:board_init_f和board_init_r(boot/u-boot/lib_mips/board.c)。这就是从汇编进入C的两个入口。先board_init_f,再board_init_r;


最终,在board_init_r中,调用无限循环:


for (;;) {


main_loop ();


}


F. main_loop(boot/u-boot/common/main.c)中,最终会调用:run_command (lastcommand, flag);


G. 在run_command(boot/u-boot/common/main.c)中,利用find_cmd找到合适的cmd_tbl_t *cmdtp对象,最后执行((cmdtp->cmd) (cmdtp, flag, argc, argv)


并且,在cmd_bootm.c中,有定义:


U_BOOT_CMD(


bootm, CFG_MAXARGS, 1, do_bootm,


"bootm - boot application image from memory\n",


"【addr 【arg ...】】\n - boot application image stored in memory\n"


"\tpassing arguments 'arg ...'; when booting a Linux kernel,\n"


"\t'arg' can be the address of an initrd image\n"


);


在boot/u-boot/include/command.h中,有定义:


#define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \


cmd_tbl_t u_bootcmd##name Struct_Section = {#name, maxargs, rep, cmd, usage}


那么,最初的((cmdtp->cmd) (cmdtp, flag, argc, argv),就会执行到do_bootm


H. 在boot模式下,敲入printenv,可以看到uboot所用到的环境变量的值:


ar7240> printenv


bootargs=console=ttyS0,115200 root=31:02 rootfstype=squashfs init=/sbin/init mtdparts=ar7240-nor0:256k(u-boot),64k(u-boot-env),2752k(rootfs),896k(uImage),64k(NVRAM),64k(ART)【xxx7】


bootcmd=bootm 0x9f300000【xxx8】


bootdelay=4【xxx9】


baudrate=115200


ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee


ipaddr=192.168.1.2【xxx10】


serverip=192.168.1.10【xxx11】


stdin=serial


stdout=serial


stderr=serial


ethact=eth0


这些环境变量的定义,是在boot/u-boot/common/environment.c中赋值的;而具体的来源,则大部分在文件boot/u-boot/include/configs/ap121.h中定义;并且这些宏定义,是通过boot/u-boot/common/env_nowhere.c中的env_init引导的。


I. 在编译内核镜像时,有如下命令:


/home/xxx/140703_AR9331_Dev/u11_OnlyBasicAndWLAN_AP121-4MB/build/../boot/u-boot/tools/mkimage -A mips -O linux -T kernel -C gzip -a 0x80002000 -e 0x8019bd60 -n Linux Kernel Image -d /home/xxx/140703_AR9331_Dev/u11_OnlyBasicAndWLAN_AP121-4MB/build/../linux/kernels/mips-linux-2.6.31/arch/mips/boot/vmlinux.bin.gz /home/xxx/140703_AR9331_Dev/u11_OnlyBasicAndWLAN_AP121-4MB/build/../images/ap121-2.6.31/vmlinux.gz.uImage【xxx12】


J. Uboot启动内核,是调用cmd_bootm.c中的do_bootm函数,其传入的命令参数就是:


bootm 0x9f300000【xxx13】


然后,可以看到如下的启动信息:


## Booting image at 9f300000 ... 【xxx14】


Image Name: Linux Kernel Image


Created: 2013-02-06 22:27:48 UTC


Image Type: MIPS Linux Kernel Image (lzma compressed)


Data Size: 771996 Bytes = 753.9 kB


Load Address: 80002000 【xxx15】


Entry Point: 8019bd60【xxx16】


Verifying Checksum at 0x9f300040 ...OK


Uncompressing Kernel Image ... OK


上述这些信息,都是do_bootm函数中,读取镜像文件头image_header_t信息后得出的


然后,利用gunzip ((void )ntohl(hdr->ih_load), unc_len, (uchar )data, &len) != 0),将压缩的镜像文件解压缩到hdr->ih_load【xxx17】 指向的地址。


最后,调用do_bootm_linux (cmdtp, flag, argc, argv,addr, len_ptr, verify); 开始内核启动过程


K. do_bootm_linux(boot/u-boot/lib_mips/mips_linux.c) :


2 获得内核镜像的启动地址:


theKernel =


(void ()(int, char , char , int)) ntohl (hdr->ih_ep);


2 【xxx18】 解析boot_args字段,得到:


linux_params_init (UNCACHED_SDRAM (gd->bd->bi_boot_params), commandline);


2 最后,直接运行内核镜像的启动地址:


flash_size_mbytes = gd->bd->bi_flashsize/(1024 1024);


theKernel (linux_argc, linux_argv, linux_env, flash_size_mbytes);【xxx19】


L. entry: 0x8019bf90地址上的程序,是什么呢?


看一下:linux/kernels/mips-linux-2.6.31/System.map,搜索8019bf9,会发现:


ffffffff8019bf90 T kernel_entry


哈哈,原来该地址上的程序是:kernel_entry


M. kernel_entry在arch/mips/kernel/head.S中定义;并且最终会跳转到start_kernel函数,从而进入C代码


N. 这里就调用了start_kernel(linux/kernels/mips-linux-2.6.31/init/main.c)


//代码参考:https://weibo.com/u/7930570539

O. Start_kernel->rest_init->kernel_thread(【xxx20】kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);->kernel_init->init_post->run_init_process("/sbin/init"); --> 进入busybox的init流程


【xxx1】## LDFLAGS_BOOTSTRAP 中,含有-Bstatic -T $(LDSCRIPT_BOOTSTRAP) -Ttext $(BOOTSTRAP_TEXT_BASE) $(PLATFORM_LDFLAGS)


## BOOTSTRAP_TEXT_BASE,在boot\u-boot\board\ar7240\ap121\config.mk中有定义,指明了BOOTSTRAP_TEXT_BASE = 0x9f000000,即bootstrap的报文段会从此地址开始。


## 那么,也就是要求:需要将tuboot放到0x9f000000处。这样tuboot启动时,才能找到这里的正确位置


【xxx2】## LDFLAGS += -Bstatic -T $(LDSCRIPT) -Ttext $(TEXT_BASE) $(PLATFORM_LDFLAGS)


## 其中的$(TEXT_BASE)在boot\u-boot\board\ar7240\ap121\config.mk中有定义,指明了TEXT_BASE = 0x80010000,即uboot的报文段会从此地址开始


【xxx3】


-a 0xffffffff80010000 \


-e 0xffffffff80010000 \


【xxx4】0x9f000000位于KSEG0地址段,其距离KSEG0地址段上限(0x9fffffff)还有0x1000000,即16M的空间。也就是说,设置0x9f000000作为基地址,也就意味着AR9331可以支持最多16MB Flash ---我的猜测,不知道是否正确


【xxx5】和MIPS24K的固定起始地址是一样的。这就是为何要规定基地址是0x9F00,0000的缘故


【xxx6】这是u-boot和bootstrap在内存中的运行域


【xxx7】由ap121.h中的CONFIG_BOOTARGS定义


表示传递给内核的启动参数


【xxx8】由ap121.h中的CONFIG_BOOTCOMMAND定义


表示自动启动时执行的命令


这里的0x9f300000就是linux内核的TEXT_BASE地址;这也正是uboot下的cp.b命令烧写Linux

相关文章
|
3天前
|
Cloud Native 持续交付 云计算
云原生技术:重塑软件开发与架构的未来
在云计算的推动下,云原生技术正逐渐成为软件开发的新标准,强调利用容器、服务网格、微服务等技术实现敏捷开发与高效运维。本文探讨了云原生技术如何重塑软件开发与架构的未来,介绍了其核心概念(如容器化、微服务架构、CI/CD)及优势(如敏捷性、可扩展性、成本效益),并讨论了其在金融服务、电子商务和物联网等领域的实际应用及面临的挑战。尽管存在技术复杂性和人才短缺等问题,云原生技术仍将成为软件开发的主流趋势。
|
1天前
|
运维 Cloud Native Devops
云原生技术:重塑现代IT架构的新引擎
在当今数字化转型的浪潮中,云原生技术以其敏捷、高效和可扩展的特性,正引领着一场IT架构的革命。本文旨在深入探讨云原生的概念、核心组件及其在现代企业中的应用价值,揭示其如何助力企业实现更快的创新速度、更高的资源利用率以及更优的用户体验。不同于传统的云计算模式,云原生从一开始就为云环境量身打造,通过容器化、微服务、DevOps等关键技术,解锁了软件开发和运维的新范式。
|
7天前
|
Cloud Native Devops 持续交付
探索云原生架构:构建高效、灵活和可扩展的系统
本文将深入探讨云原生架构的核心概念、主要技术以及其带来的优势。我们将从云原生的定义开始,了解其设计理念和技术原则;接着分析容器化、微服务等关键技术在云原生中的应用;最后总结云原生架构如何助力企业实现数字化转型,提升业务敏捷性和创新能力。通过这篇文章,读者可以全面了解云原生架构的价值和应用前景。
|
3天前
|
存储 缓存 关系型数据库
后端技术在现代软件架构中的关键作用
本文将深入探讨后端技术在现代软件架构中的关键作用,从其定义、重要性到具体应用案例,全面解析后端技术如何支撑复杂系统的高效运行。通过简明易懂的语言和条理清晰的结构,帮助读者理解后端技术的核心概念及其在实际项目中的应用。
10 0
|
6天前
|
存储 安全 算法
探索操作系统的心脏:内核技术与架构
本文深入探讨了现代操作系统中至关重要的部分——内核。通过分析其功能、架构以及在系统性能和稳定性中的作用,揭示了内核技术背后的复杂性及其对操作系统整体表现的影响。我们将从基本概念入手,逐步深入到内核的具体实现细节,旨在为读者提供一个全面而清晰的理解框架。
|
7天前
|
存储 负载均衡 数据库
探索后端技术:从服务器架构到数据库优化的实践之旅
在当今数字化时代,后端技术作为支撑网站和应用运行的核心,扮演着至关重要的角色。本文将带领读者深入后端技术的两大关键领域——服务器架构和数据库优化,通过实践案例揭示其背后的原理与技巧。无论是对于初学者还是经验丰富的开发者,这篇文章都将提供宝贵的见解和实用的知识,帮助读者在后端开发的道路上更进一步。
|
22天前
|
Kubernetes Cloud Native Docker
云原生之旅:从容器到微服务的架构演变
【8月更文挑战第29天】在数字化时代的浪潮下,云原生技术以其灵活性、可扩展性和弹性管理成为企业数字化转型的关键。本文将通过浅显易懂的语言和生动的比喻,带领读者了解云原生的基本概念,探索容器化技术的奥秘,并深入微服务架构的世界。我们将一起见证代码如何转化为现实中的服务,实现快速迭代和高效部署。无论你是初学者还是有经验的开发者,这篇文章都会为你打开一扇通往云原生世界的大门。
|
7天前
|
运维 Cloud Native Devops
云原生架构的崛起与实践云原生架构是一种通过容器化、微服务和DevOps等技术手段,帮助应用系统实现敏捷部署、弹性扩展和高效运维的技术理念。本文将探讨云原生的概念、核心技术以及其在企业中的应用实践,揭示云原生如何成为现代软件开发和运营的主流方式。##
云原生架构是现代IT领域的一场革命,它依托于容器化、微服务和DevOps等核心技术,旨在解决传统架构在应对复杂业务需求时的不足。通过采用云原生方法,企业可以实现敏捷部署、弹性扩展和高效运维,从而大幅提升开发效率和系统可靠性。本文详细阐述了云原生的核心概念、主要技术和实际应用案例,并探讨了企业在实施云原生过程中的挑战与解决方案。无论是正在转型的传统企业,还是寻求创新的互联网企业,云原生都提供了一条实现高效能、高灵活性和高可靠性的技术路径。 ##
17 3
|
11天前
|
监控 负载均衡 应用服务中间件
探索微服务架构下的API网关设计与实践
在数字化浪潮中,微服务架构以其灵活性和可扩展性成为企业IT架构的宠儿。本文将深入浅出地介绍微服务架构下API网关的关键作用,探讨其设计原则与实践要点,旨在帮助读者更好地理解和应用API网关,优化微服务间的通信效率和安全性,实现服务的高可用性和伸缩性。
30 3
|
14天前
|
存储 Java Maven
从零到微服务专家:用Micronaut框架轻松构建未来架构
【9月更文挑战第5天】在现代软件开发中,微服务架构因提升应用的可伸缩性和灵活性而广受欢迎。Micronaut 是一个轻量级的 Java 框架,适合构建微服务。本文介绍如何从零开始使用 Micronaut 搭建微服务架构,包括设置开发环境、创建 Maven 项目并添加 Micronaut 依赖,编写主类启动应用,以及添加控制器处理 HTTP 请求。通过示例代码展示如何实现简单的 “Hello, World!” 功能,并介绍如何通过添加更多依赖来扩展应用功能,如数据访问、验证和安全性等。Micronaut 的强大和灵活性使你能够快速构建复杂的微服务系统。
38 5