Python实现WOA智能鲸鱼优化算法优化支持向量机回归模型(LinearSVR算法)项目实战

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Python实现WOA智能鲸鱼优化算法优化支持向量机回归模型(LinearSVR算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。

本项目通过WOA鲸鱼优化算法优化支持向量机回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

编号 

变量名称

描述

1

x1

 

2

x2

 

3

x3

 

4

x4

 

5

x5

 

 

15

x15

 

16

y

因变量

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

image.png

从上图可以看到,总共有16个变量,数据中无缺失值。

关键代码:

image.png

 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

image.png

关键代码如下:

image.png

4.探索性数据分析

4.1 变量y分布直方图

用Matplotlib工具的hist()方法绘制直方图:

image.png

4.2 相关性分析

image.png

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

image.png

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%验证集进行划分,关键代码如下:

image.png

6.构建WOA鲸鱼优化算法优化支持向量机回归模型

主要使用WOA鲸鱼优化算法优化LinearSVR算法,用于目标回归。

6.1 算法介绍

说明:算法介绍来源于网络,供参考。

鲸鱼优化算法(whale optimization algorithm,WOA)是模仿座头鲸的狩猎行为进而提出的一种新型启发式优化算法。在 WOA 算法中,每只座头鲸的位置代表一个可行解。在海洋活动中,座头鲸有着一种特殊的狩猎方法,这种觅食行为称为bubble-net 捕食策略,其狩猎行为如图所示:

image.png

l 包围猎物

座头鲸在狩猎时要包围猎物,为了描述这种行为,Mirjalili 提出了下面的数学模型:

image.png

l 狩猎行为

根据座头鲸的狩猎行为,它是以螺旋运动游向猎物,故狩猎行为的数学模型如下:

image.png

l 搜索猎物

在搜索猎物时,其数学模型如下:

image.png

l 算法流程

1)初始化参数:即鲸鱼种群规模大小SN,最大迭代次数Tmax

2)算法初始化鲸鱼种群的位置;

3)计算每一头鲸鱼相应的适应度值,根据适应度值的大小排序,并选取SN个作为初始种群;

4)计算出SN个个体适应度值的大小,找出适应度值最小的个体位置作为最优位置;

5)更新下一代的位置;

6)若达到终止条件,则输出最优个体,即算法找到的最优解;否则,返回步骤(4)。

6.2 WOA鲸鱼优化算法寻找最优参数值

关键代码:

image.png

 

每次迭代的过程数据:

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

通过上图可以看出,每次迭代误差信息。

模型迭代残差曲线图:

第一次迭代:

image.png

第二次迭代:

image.png

第三次迭代:

image.png

第四次迭代:

image.png

第五次迭代:

image.png

第六次迭代:

image.png

第七次迭代:

image.png

第八次迭代:

image.png

第九次迭代:

image.png

第十次迭代:

image.png

 

通过上图可以看到,随着迭代次数增加,残差逐渐减少并趋于平稳。

 

最优参数:

image.png

通过残差曲线图可以看出,最后一次迭代基本是做好的结果。

6.3 最优参数模型预测

这里通过最优参数模型对测试数据集进行预测并绘制残差曲线图。

关键代码:

image.png

模型迭代残差曲线图:

image.png

7.模型评估

7.1评估指标及结果 

评估指标主要包括可均方误差、最大残差、解释性方差等等。

模型名称

指标名称

指标值

测试集

支持向量机回归模型

最大残差

18.75263635110791

均方误差

66.0485

解释方差分

0.9221

绝对误差

5.8703

从上表可以看出,解释方差分为0.9221,说明鲸鱼优化的模型效果良好。

关键代码如下:

image.png

7.2 真实值与预测值对比图

image.png

从上图可以看出真实值和预测值波动基本一致,模型效果良好。

8.结论与展望

综上所述,本文采用了WOA鲸鱼优化算法寻找支持向量机LinearSVR算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的建模工作。


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1t_VokGXw9MIONOj0UfDKTg 
提取码:li17
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
16天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
119 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
1月前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
1月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
1月前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
132 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
3天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
13天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
14天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真

热门文章

最新文章