Python并发编程新篇章:asyncio库使用全攻略,轻松驾驭异步世界!

简介: 【7月更文挑战第11天】Python的asyncio开启异步编程时代,通过案例展示如何用它和aiohttp构建并发爬虫。安装aiohttp后,定义异步函数`fetch`进行HTTP请求,返回状态码和内容长度。在`main`中,并发执行多个`fetch`任务,利用`asyncio.gather`收集结果。使用`async with`管理HTTP会话资源,确保释放。通过这种方式,爬虫性能大幅提升,适用于高并发场景。学习asyncio是提升并发性能的关键。

在Python的浩瀚宇宙中,并发编程一直是提升应用性能、处理高并发场景的关键技术之一。随着asyncio库的诞生,Python正式迈入了异步编程的新纪元。本文将通过一个案例分析,带你深入了解asyncio库的使用,让你轻松驾驭异步世界的奥秘。

案例背景:构建异步Web爬虫
假设我们需要编写一个Web爬虫,它需要从多个网站并行抓取数据。传统的同步爬虫会逐一请求每个URL,效率低下。而使用asyncio,我们可以实现真正的并发请求,大幅提升数据抓取速度。

准备工作:安装aiohttp库
aiohttp是一个基于asyncio的HTTP客户端/服务器框架,非常适合用于异步网络请求。首先,我们需要安装它:

bash
pip install aiohttp
编写异步爬虫
接下来,我们将使用aiohttp和asyncio编写一个简单的异步爬虫。这个爬虫将并发地请求多个URL,并打印出每个页面的状态码和内容长度。

python
import aiohttp
import asyncio

async def fetch(session, url):
async with session.get(url) as response:
return response.status, len(await response.text())

async def main():
urls = [
'http://example.com',
'http://google.com',
'http://python.org',

    # 添加更多URL...  
]  

async with aiohttp.ClientSession() as session:  
    tasks = [fetch(session, url) for url in urls]  
    results = await asyncio.gather(*tasks)  
    for status, length in results:  
        print(f'URL status: {status}, Content length: {length}')  

Python 3.7+

asyncio.run(main())
案例分析
异步函数定义:fetch函数是一个异步函数,它接收一个aiohttp.ClientSession实例和一个URL作为参数。函数内部,我们使用async with语句发起异步HTTP GET请求,并等待响应。然后,我们返回响应的状态码和内容长度。
并发执行:在main函数中,我们创建了多个fetch任务的列表,并使用asyncio.gather并发地执行这些任务。asyncio.gather会等待所有任务完成,并返回一个包含所有任务结果的列表。
资源管理:aiohttp.ClientSession是一个上下文管理器,它负责管理HTTP连接。使用async with语句可以确保会话在使用完毕后被正确关闭,释放资源。
运行异步程序:最后,我们使用asyncio.run(main())来运行异步的主函数。这是Python 3.7及以上版本中推荐的启动异步程序的方式。
总结
通过本案例,我们展示了如何使用asyncio和aiohttp库来构建高效的异步Web爬虫。异步编程不仅限于网络请求,它还可以应用于文件IO、数据库操作等多种场景,帮助我们充分利用多核CPU的计算能力,提升程序的并发性能。掌握asyncio库,将是你迈向高效并发编程的重要一步。在这个异步编程的新篇章中,让我们携手前行,探索更多的可能性!

相关文章
|
3月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
531 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
3月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
264 0
|
3月前
|
数据采集 数据库 开发者
利用Python asyncio实现高效异步编程
利用Python asyncio实现高效异步编程
270 100
|
2月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
268 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
2月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
339 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
3月前
|
调度 数据库 Python
Python异步编程入门:asyncio让并发变得更简单
Python异步编程入门:asyncio让并发变得更简单
225 5
|
4月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
287 18
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
315 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
343 104

推荐镜像

更多