Transformers 4.37 中文文档(二十五)(3)

简介: Transformers 4.37 中文文档(二十五)

Transformers 4.37 中文文档(二十五)(2)https://developer.aliyun.com/article/1563791


FlaxBlenderbotSmallModel

class transformers.FlaxBlenderbotSmallModel

<来源>

( config: BlenderbotSmallConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config(BlenderbotSmallConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

裸的 BlenderbotSmall Model 变压器输出原始隐藏状态,没有特定的头部。此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 Flax Linen flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持内在的 JAX 功能,例如:

__call__

<来源>

( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时),包括根据配置(BlenderbotSmallConfig)和输入而异的各种元素。

  • last_hidden_state (jnp.ndarray,形状为(batch_size, sequence_length, hidden_size)) — 模型解码器最后一层的隐藏状态序列。
    如果使用past_key_values,则只输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。
  • past_key_values (tuple(tuple(jnp.ndarray))可选,当传递use_cache=True或当config.use_cache=True时返回) — 长度为config.n_layerstuple(jnp.ndarray)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见past_key_values输入)。
  • decoder_hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组。
    解码器在每一层输出的隐藏状态加上初始嵌入输出。
  • decoder_attentions (tuple(jnp.ndarray)可选,当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组。
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(jnp.ndarray)可选,当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state (jnp.ndarray,形状为(batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组。
    编码器在每一层输出的隐藏状态加上初始嵌入输出。
  • encoder_attentions (tuple(jnp.ndarray)可选,当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组。
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallModel
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> model = FlaxBlenderbotSmallModel.from_pretrained("facebook/blenderbot_small-90M")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
encode

<来源>

( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    输入 ID 是什么?
  • attention_mask(形状为(batch_size, sequence_length)jnp.ndarray可选)- 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:
  • 对于未被掩码的标记为 1,
  • 对于被掩码的标记为 0。
  • 什么是注意力掩码?
  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)- 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包括根据配置()和输入的不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)jnp.ndarray)- 模型最后一层的隐藏状态序列。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出+一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

示例:

>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
decode

<来源>

( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • decoder_input_ids(形状为(batch_size, target_sequence_length)jnp.ndarray)- 译码器输入序列标记在词汇表中的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是解码器输入 ID?
    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将通过将input_ids向右移动来创建此张量,以用于去噪预训练。
  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组由(last_hidden_state, optional: hidden_states, optional: attentions)组成,last_hidden_state的形状为(batch_size, sequence_length, hidden_size)optional)是编码器最后一层的隐藏状态序列。用于解码器的交叉注意力。
  • encoder_attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
  • 1 表示未被掩码的标记,
  • 0 表示被掩码的标记。
  • 什么是注意力掩码?
  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个张量,忽略decoder_input_ids中的填充标记。因果掩码也将默认使用。
    如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • past_key_values (Dict[str, np.ndarray], optional, 由init_cache返回或者传递先前的past_key_values时返回) — 预先计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为*[batch_size, max_length]*。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或者tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或者一个torch.FloatTensor元组(如果传递了return_dict=False或者config.return_dict=False)包含各种元素,取决于配置()和输入。

  • last_hidden_state (jnp.ndarray of shape (batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
    如果仅使用past_key_values,则输出序列的最后一个隐藏状态的形状为(batch_size, 1, hidden_size)
  • past_key_values (tuple(tuple(jnp.ndarray)), optional, 当传递use_cache=True或者config.use_cache=True时返回) — 长度为config.n_layerstuple(jnp.ndarray)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块中的键和值,以及在交叉注意力块中可选地使用config.is_encoder_decoder=True)可用于加速顺序解码(请参见past_key_values输入)。
  • hidden_states (tuple(jnp.ndarray), 可选, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出,一个用于每个层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。
  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 后使用,用于计算交叉注意力头中的加权平均值。

示例:

>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state

FlaxBlenderbotForConditionalGeneration

class transformers.FlaxBlenderbotSmallForConditionalGeneration

<来源>

( config: BlenderbotSmallConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (BlenderbotSmallConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。
    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。
    请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
    如果要更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。

带有语言建模头的 BLENDERBOT_SMALL 模型。可用于摘要。此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 Flax 亚麻flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下,如果提供了填充,则将被忽略。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 对于not masked的标记为 1,
  • 对于masked的标记为 0。
  • 什么是注意力掩码?
  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — 词汇表中解码器输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是解码器输入 ID?
    对于翻译和摘要训练,应提供decoder_input_ids。如果未提供decoder_input_ids,模型将通过将input_ids向右移动来创建此张量,以进行去噪预训练,遵循论文。
  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下还将使用因果掩码。
    如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。
  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包括根据配置(BlenderbotSmallConfig)和输入的各种元素。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)jnp.ndarray)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • past_key_valuestuple(tuple(jnp.ndarray))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstuple(jnp.ndarray)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。
  • decoder_hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出+一个用于每一层的输出)。
    解码器每一层的隐藏状态加上初始嵌入输出。
  • decoder_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • encoder_last_hidden_state(形状为(batch_size, sequence_length, hidden_size)jnp.ndarray可选)— 模型编码器最后一层的隐藏状态序列。
  • encoder_hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出+一个用于每一层的输出)。
    编码器每一层的隐藏状态加上初始嵌入输出。
  • encoder_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxBlenderbotSmallPreTrainedModel的前向方法覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

摘要示例:

>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"]).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))

填充掩码示例:

>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs)
>>> tokenizer.decode(predictions).split()
encode

< source >

( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
  • 对于未被掩码的标记为 1,
  • 对于被掩码的标记为 0。
  • 什么是注意力掩码?
  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量中的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置()和输入的不同元素。

  • last_hidden_state (jnp.ndarray of shape (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。
  • hidden_states (tuple(jnp.ndarray), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — jnp.ndarray的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
    每层模型的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — jnp.ndarray的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
decode

< source >

( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None deterministic: bool = True params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length)) — 词汇表中解码器输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是解码器输入 ID?
    对于翻译和摘要训练,应提供decoder_input_ids。如果未提供decoder_input_ids,模型将通过将input_ids向右移动来创建此张量,以便进行去噪预训练,遵循论文。
  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组包括 (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size)optional) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。
  • encoder_attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在 [0, 1] 之间:
  • 对于未被masked的标记为 1,
  • 对于被masked的标记为 0。
  • 什么是注意力掩码?
  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个张量,忽略decoder_input_ids中的填充标记。因果掩码也将默认使用。
    如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图表 1。
  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
  • past_key_values (Dict[str, np.ndarray], optional, 由 init_cache 返回或传递先前的 past_key_values 时返回) — 预先计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为 [batch_size, max_length]
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的 attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的 hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种元素,具体取决于配置()和输入。

  • logits (jnp.ndarray of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) - 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入输出,一个用于每一层的输出)。
    模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=True或当config.output_attentions=True时返回) - 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
  • cross_attentionstuple(jnp.ndarray)可选,当传递output_attentions=True或当config.output_attentions=True时返回) - 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。
    交叉注意力权重在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • past_key_valuestuple(tuple(jnp.ndarray))可选,当传递use_cache=True或当config.use_cache=True时返回) - 长度为config.n_layersjnp.ndarray元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True时相关。
    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。

示例:

>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
>>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits


Transformers 4.37 中文文档(二十五)(4)https://developer.aliyun.com/article/1563795

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
7月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(二十九)(5)
Transformers 4.37 中文文档(二十九)
61 11
|
7月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十六)(4)
Transformers 4.37 中文文档(二十六)
43 1
|
7月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十六)(3)
Transformers 4.37 中文文档(二十六)
43 0
|
7月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十九)(4)
Transformers 4.37 中文文档(二十九)
43 12
|
7月前
|
PyTorch TensorFlow API
Transformers 4.37 中文文档(二十九)(2)
Transformers 4.37 中文文档(二十九)
41 5
|
7月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(二十二)(4)
Transformers 4.37 中文文档(二十二)
39 3
|
7月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(二十九)(1)
Transformers 4.37 中文文档(二十九)
62 3
|
7月前
|
缓存 自然语言处理 PyTorch
Transformers 4.37 中文文档(二十二)(2)
Transformers 4.37 中文文档(二十二)
53 2
|
7月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(二十九)(3)
Transformers 4.37 中文文档(二十九)
52 2
|
7月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十六)(5)
Transformers 4.37 中文文档(二十六)
29 1