惊艳!原来Python闭包与装饰器可以这样玩,让你的代码瞬间高大上

简介: 【7月更文挑战第6天】Python中的闭包和装饰器是代码复用和增强功能的利器。闭包是能记住外部作用域变量的内嵌函数,常用于封装和优化代码。例如,`make_multiplier_of`生成了乘法函数,如`times3`和`times5`,避免了重复代码。装饰器则不修改原函数即可添加新功能,如`my_decorator`在函数调用前后打印信息。当两者结合,如`repeat`装饰器,可以根据参数动态改变函数行为,如重复执行`greet`函数。闭包和装饰器的协同使用提升了代码的优雅性、效率和可扩展性。

在Python编程的世界里,闭包(Closure)与装饰器(Decorator)仿佛是两位魔法师,他们各自掌握着独特的魔法,能够为我们的代码增添无限魅力。当这两位魔法师联手时,更是能创造出令人惊艳的代码奇迹,让我们的代码瞬间变得高大上。

首先,让我们来见识一下闭包的魔法。闭包,简而言之,就是一个能记住并访问其所在作用域中变量的函数。在Python中,闭包常常与嵌套函数一起使用,为我们提供了一种强大的代码封装和优化手段。通过使用闭包,我们可以将函数与其所依赖的环境打包在一起,形成一个独立的单元,从而在不同的地方重复使用,而无需担心环境变量的问题。

python
def make_multiplier_of(n):
def multiplier(x):
return x * n
return multiplier

times3 = make_multiplier_of(3)
times5 = make_multiplier_of(5)

print(times3(9)) # 输出 27
print(times5(3)) # 输出 15
在这个例子中,我们利用闭包创建了两个乘法函数times3和times5,它们分别能将传入的参数乘以3和5。这种方式不仅避免了代码重复,还提高了代码的可读性和可维护性。

接下来,让我们来看看装饰器的魔法。装饰器是Python的一个语法糖,它允许我们在不修改原有函数定义的情况下,给函数添加新的功能。装饰器本质上是一个接收函数作为参数并返回一个新的函数的函数。通过使用装饰器,我们可以轻松地给多个函数添加相同的功能,而无需在每个函数中都重复编写相同的代码。

python
def my_decorator(func):
def wrapper(args, **kwargs):
print("Something is happening before the function is called.")
result = func(
args, **kwargs)
print("Something is happening after the function is called.")
return result
return wrapper

@my_decorator
def say_hello():
print("Hello!")

say_hello()
在这个例子中,我们定义了一个装饰器my_decorator,它能够在被装饰的函数say_hello执行前后打印一些信息。这种方式极大地提高了代码的复用性和灵活性。

现在,让我们来见证一下闭包与装饰器联手的魔法。我们可以创建一个带参数的装饰器,这个装饰器可以根据传入的参数动态地改变被装饰函数的行为。这种方式不仅提高了代码的灵活性,还进一步减少了代码冗余。

python
def repeat(times):
def decorator(func):
def wrapper(args, **kwargs):
for _ in range(times):
result = func(
args, **kwargs)
return result
return wrapper
return decorator

@repeat(times=3)
def greet(name):
print(f"Hello {name}")

greet("World")
在这个例子中,repeat是一个接收参数times的函数,它返回了一个真正的装饰器decorator。decorator再返回一个wrapper函数,这个wrapper函数会根据times参数的值多次调用原始函数func。通过这种方式,我们创建了一个可以根据需要重复执行任意次数的函数装饰器。

对比单独使用闭包或装饰器,我们可以发现,将这两者结合起来使用,可以创造出更加复杂和强大的功能。闭包让我们能够将函数与其所依赖的环境打包在一起,而装饰器则允许我们在不修改原有函数定义的情况下给函数添加新的功能。当这两者联手时,我们可以轻松地创建出既具有封装性又具有扩展性的代码,让我们的代码变得更加优雅、高效和强大。因此,在Python编程中,学会灵活运用闭包与装饰器,无疑会让你的代码瞬间高大上起来。

相关文章
|
22天前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
96 61
Python装饰器实战:打造高效性能计时工具
|
22天前
|
设计模式 前端开发 Shell
Python装饰器是什么?
装饰器是Python中用于动态修改函数、方法或类功能的工具,无需改变原代码。通过将函数作为参数传递并返回新函数,装饰器可以在原函数执行前后添加额外逻辑。例如,使用`@logger`装饰器可以打印函数调用日志,而`@timethis`则可用于计算函数执行时间。为了保持被装饰函数的元信息(如`__name__`和`__doc__`),可使用`functools.wraps`装饰器。此外,带参数的装饰器可通过嵌套函数实现,如`@timeitS(2)`,以根据参数条件输出特定信息。
83 59
|
13天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
49 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
72 33
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
49 10
|
2月前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
43 5
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
98 8
|
2月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
2月前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
5月前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!