基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真

简介: **算法预览图省略**- **软件版本**: MATLAB 2022a- **核心代码片段**略- **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。- **CNN**利用卷积捕获时间序列的空间特征。- **LSTM**通过门控机制处理长序列依赖,避免梯度问题。- **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序

```for i=1:Iter
i
for j=1:Npeop
rng(i+j)
if func_obj(x1(j,:))<pbest1(j)
p1(j,:) = x1(j,:);%变量
pbest1(j) = func_obj(x1(j,:));
end
if pbest1(j)<gbest1
g1 = p1(j,:);%变量
gbest1 = pbest1(j);
end

    v1(j,:) = 0.8*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-x1(j,:));
    x1(j,:) = x1(j,:)+v1(j,:); 

    for k=1:dims
        if x1(j,k) >= tmps(2,k)
           x1(j,k) = tmps(2,k);
        end
        if x1(j,k) <= tmps(1,k)
           x1(j,k) = tmps(1,k);
        end
    end

    for k=1:dims
        if v1(j,k) >= tmps(2,k)/2
           v1(j,k) =  tmps(2,k)/2;
        end
        if v1(j,k) <= tmps(1,k)/2
           v1(j,k) =  tmps(1,k)/2;
        end
    end

end
gb1(i)=gbest1 

end

figure;
plot(gb1,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('优化迭代次数');
ylabel('适应度值');
.....................................................
figure;
plot(IT(1:1:end),Accuracy(1:1:end));
xlabel('epoch');
ylabel('RMSE');
%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1Vmax2;
T_sim2=Dpre2
Vmax2;

%网络结构
analyzeNetwork(Net)

figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on
subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);

save R2.mat Num2 Tat_test T_sim2 gb1 Accuracy

```

4.算法理论概述
基于粒子群优化(Particle Swarm Optimization, PSO)的卷积神经网络-长短期记忆网络(Convolutional Neural Network - Long Short-Term Memory, CNN-LSTM)模型在时间序列回归预测中,结合了深度学习的强大表达能力和优化算法的高效搜索能力,为复杂时间序列数据的预测提供了一种强有力的解决方案。

4.1 卷积神经网络(CNN)
CNN以其在图像识别领域的卓越表现而闻名,但其在时间序列分析中也显示出了强大的潜力。CNN通过局部连接和权值共享减少参数数量,利用卷积层捕获输入数据的空间特征。

image.png

4.2 长短期记忆网络(LSTM)
LSTM是RNN的一种变体,特别擅长处理长序列依赖问题。它通过门控机制控制信息的遗忘、更新和输出,有效缓解了梯度消失/爆炸问题。
image.png

4.3 CNN-LSTM结合PSO的时间序列预测
在时间序列预测任务中,首先使用CNN对输入序列进行特征提取,然后将提取到的特征作为LSTM的输入,进一步捕捉序列中的时序依赖关系。整个网络的参数(包括CNN的卷积核权重、LSTM的门控参数等)构成了PSO算法的搜索空间。

结合PSO的过程:

初始化一组粒子,每个粒子代表一组CNN-LSTM模型的参数。
对于每个粒子,构建相应的CNN-LSTM模型并训练,评估其在验证集上的预测性能(如均方误差MSE)作为适应度函数。
根据PSO算法更新粒子的位置和速度,不断寻找更优的模型参数配置。
迭代此过程直至满足停止条件(如达到最大迭代次数或找到足够好的解)。

相关文章
|
14天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
22天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
257 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
152 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
124 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
8月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

热门文章

最新文章