语音识别,列表的定义语法,列表[],列表的下标索引,从列表中取出来特定的数据,name[0]就是索引,反向索引,头部是-1,my[1][1],嵌套列表使用, 列表常用操作, 函数一样,需引入

简介: 语音识别,列表的定义语法,列表[],列表的下标索引,从列表中取出来特定的数据,name[0]就是索引,反向索引,头部是-1,my[1][1],嵌套列表使用, 列表常用操作, 函数一样,需引入

列表功能总览

列表的定义格式:

为什么需要列表

列表

字符串变量,使用列表,可以一次存储多个数据:

列表的定义方法:

定义一个列表 list

嵌套列表

下标索引叫做0

反向索引头部是-1

返回

list index out of range

嵌套列表的索引

下标索引汇总

列表的常用操作

我们把他称为列表的方法

函数

函数的使用要先引入

函数的查询功能

mylist = []

列表[0] = 值可以修改值

将my[0]=1可以修改索引的值

修改列表代码实例

插入元素的写法

在指定下标位置插入新的元素,xxx.insert(1,"best")

列表中只能添加到尾部的元素写法

代码实例

追加元素方式2,将其他的数据容器的内容取出追加到列表尾部中

使用extend追加到列表之后的元素

删除

del列表[下标]的写法

pop删除法取出来,在返回来的方法

删除某个元素的匹配项

通过remove进行移除

列表清空内容

统计元素数量用.count

用count进行表示

len列表页可以得到列表里元素的数量

列表功能总览


相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
4月前
|
语音技术
语音识别-----列表的常用操作课后练习讲解,用变量追加,取出第一个,取出最后一个,下标位置,列表的循环遍历,下标+1的写法,len下标可以小于这个值,while循环对index循环的遍历
语音识别-----列表的常用操作课后练习讲解,用变量追加,取出第一个,取出最后一个,下标位置,列表的循环遍历,下标+1的写法,len下标可以小于这个值,while循环对index循环的遍历
|
4月前
|
语音技术 C语言 Windows
语音识别------ffmpeg的使用01,ffmpeg的安装,会做PPT很好,ffmpeg不具备直接使用,只可以操作解码数据,ffmpeg用C语言写的,得学C语言,ffmpeg的安装
语音识别------ffmpeg的使用01,ffmpeg的安装,会做PPT很好,ffmpeg不具备直接使用,只可以操作解码数据,ffmpeg用C语言写的,得学C语言,ffmpeg的安装
|
4月前
|
语音技术
语音识别----函数基础定义联系案例,函数的参数,函数的参数练习案例,函数的返回值定义语法,函数返回值之None,函数的说明文档,函数的嵌套调用,变量在函数中的作用域,内部变量变全局变量用global
语音识别----函数基础定义联系案例,函数的参数,函数的参数练习案例,函数的返回值定义语法,函数返回值之None,函数的说明文档,函数的嵌套调用,变量在函数中的作用域,内部变量变全局变量用global
|
4月前
|
语音技术 Python
语音识别,continue和break的使用,循环综合案例,完成发工资案例,函数的初体验,len()是内置好的函数,def 函数名 def xxx(),函数的定义 def xxx() ,调用函数
语音识别,continue和break的使用,循环综合案例,完成发工资案例,函数的初体验,len()是内置好的函数,def 函数名 def xxx(),函数的定义 def xxx() ,调用函数
|
4月前
|
存储 语音技术 Python
语音识别,函数综合案例,黑马ATM,/t/t一个对不齐,用两个/t,数据容器入门,数据容器可以分为列表(list)、元组(tuple)、字符串(str)、集合(set)、字典(dict)
语音识别,函数综合案例,黑马ATM,/t/t一个对不齐,用两个/t,数据容器入门,数据容器可以分为列表(list)、元组(tuple)、字符串(str)、集合(set)、字典(dict)
|
6月前
|
机器学习/深度学习 自然语言处理 算法
基于深度学习的语音识别技术应用与发展
在当今数字化时代,语音识别技术已经成为人机交互领域的重要组成部分。本文将介绍基于深度学习的语音识别技术在智能助手、智能家居和医疗健康等领域的应用与发展,同时探讨该技术在未来的潜在应用和发展方向。
198 4
|
4月前
|
机器学习/深度学习 自然语言处理 算法
未来语音交互新纪元:FunAudioLLM技术揭秘与深度评测
人类自古以来便致力于研究自身并尝试模仿,早在2000多年前的《列子·汤问》中,便记载了巧匠们创造出能言善舞的类人机器人的传说。
12233 116
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
7天前
|
机器学习/深度学习 自然语言处理 搜索推荐
智能语音交互技术:构建未来人机沟通新桥梁####
【10月更文挑战第28天】 本文深入探讨了智能语音交互技术的发展历程、当前主要技术框架、核心算法原理及其在多个领域的应用实例,旨在为读者提供一个关于该技术全面而深入的理解。通过分析其面临的挑战与未来发展趋势,本文还展望了智能语音交互技术如何继续推动人机交互方式的革新,以及它在未来社会中的潜在影响。 ####
24 0
|
8天前
|
机器学习/深度学习 搜索推荐 人机交互
智能语音交互技术的突破与未来展望###
【10月更文挑战第27天】 本文聚焦于智能语音交互技术的最新进展,探讨了其从早期简单命令识别到如今复杂语境理解与多轮对话能力的跨越式发展。通过深入分析当前技术瓶颈、创新解决方案及未来趋势,本文旨在为读者描绘一幅智能语音技术引领人机交互新纪元的蓝图。 ###
16 0
下一篇
无影云桌面