【数据结构】AVL树——平衡二叉搜索树

简介: 【数据结构】AVL树——平衡二叉搜索树

AVL树概述

平衡树:左子树的高度等于右子树的高度

不平衡树:左子树的高度不等于等于右子树的高度

二叉搜索树很难是一颗平衡树。

对二叉树进行插入和删除的操作,或插入大量的数据不够随机,都会是使二叉搜索树不够平衡。

极端情况下,二叉树会退化成类似链表的结构,那么二叉搜索树查询数据的效率荡然无存。

在二叉树的基础上加入平衡的概念就是平衡二叉搜索树,也叫AVL树

AVL树也不是一颗绝对的平衡树,AVL树的平衡是相对的,它允许左子树和右子树的高度为 1 ,但不能超过 1

平衡是相对的很好理解,因为一个父亲节点最多只能有两个孩子节点,而数据又是一个一个插入的,所以一定会出现左子树和右子树高度差为 1 的情况。

B树可达到绝对平衡,因为B树是多叉结构——一个父亲节点有多个孩子节点

如果左子树和右子树的高度差为 2 就视为打破平衡

如果打破平衡,就需要通过旋转这一操作让左右子树的高度差小于等于 1 。

AVL树是保持一种相对平衡的状态,而不是绝对平衡。那么AVL树搜索数据的效率只能是接近

AVL树只是保证了搜索效率的下限,而不是提高了上限

平衡因子

平衡因子这一概念并不是AVL树所必备的——从代码实现的角度来说,如果不加入平衡因子的概念理解起来会比较抽象。

平衡因子:让每个节点存一个整型,该整形值的大小等于右子树的高度减左子树的高度

平衡因子等于 0 左右子树平衡

平衡因子等于 1左右子树相对平衡,右树偏高

平衡因子等于 -1左右子树相对平衡,左树树偏高

平衡因子等于 2 -2左右子树不平衡

平衡因子的更新:

插入父亲节点的右边平衡因子加加,插入父亲节点的右边平衡因子减减

父亲节点更新后的平衡因子等于 1 或 -1 ,需要不断往上(溯源)更新,直到父亲节点的平衡因子为 0 或 更新至整棵树的根节点就停止更新

如果父亲节点的平衡因子为 2 或 -2 时,需要对这棵子树旋转,旋转后更新平衡因子

示例

旋转情况分类

旋转分为:

左单旋 右单旋 左右双旋  右左双旋

左单旋

:新节点插入较高右子树的右侧

具象图:

抽象图:

那么左单旋是怎么旋的呢?核心步骤为:

设父亲节点为:fathernode 孩子节点为:cur

cur的左孩子成为fathernode的右孩子,

再让fathernode成为cur的左孩子。

如下示意图

右单旋

:新节点插入较高左子树的左侧

具象图:

抽象图:

那么右单旋是怎么旋的呢?核心步骤为:

设父亲节点为:fathernode 孩子节点为:cur

cur的右孩子成为fathernode的左孩子,

再让fathernode成为cur的右孩子

如下示意图:

左右双旋

:新节点插入在较高左子树的右侧——先左单旋再右单旋

左右双旋的核心步骤为:

设父亲节点为:fathernode

父亲的左孩子节点为:fathernodeL

父亲的左孩子节点的右孩子节点的为fathernodeLR

先让fathernodeL左单旋,再让fathernodeLR进行右单旋

这里小编直接上抽象图:

右左双旋

:新节点插入再较高右子树的左侧——先右单旋再左单旋

设父亲节点为:fathernode

父亲的 右孩子节点为:fathernodeR

父亲的右孩子节点的左孩子节点的为fathernodeRL

先对fathernodeR进行右单旋,再对fathernode进行左单旋。

示意图:

AVL树节点设计

AVL树的节点需要三个指针,分别指向左孩子节点,右孩子节点,父亲节点。指向父亲节点的指针是为了能溯源更新平衡因子。

需要一个整型存储平衡因子,平衡因子在构造函数的初始化列表中初始化为 0,因为新节点左右孩子都为空。

template <class K>
class AVLTreeNode
{
public:
 
  AVLTreeNode(const K& key) //构造函数
    :_key(key)
    , _left(nullptr)
    , _right(nullptr)
    , _FatherNode(nullptr)
    , _bf(0)
  {
 
  }
 
  K _key; //键值   
 
  AVLTreeNode<K>* _left;//左孩子
  AVLTreeNode<K>* _right;//右孩子
  AVLTreeNode<K>* _FatherNode;//父亲  
 
  int _bf;//平衡因子
 
};

AVL树设计

template <class K>
class AVLTree
{
  typedef AVLTreeNode<K> node; 
 
  node* _root;
 
public:
 
  AVLTree()  //构造函数,初始化为空树
    :_root(nullptr)
  {
 
  }
 
 
 
 
  bool Insert(const K& key)//插入元素
  {
//
    if (nullptr == _root) //是否是空树
    {
      _root = new node(key);  
      return true;
    }
//
    node* cur = _root;
    node* fathernode = nullptr;
 
    while (cur)  //查找插入的位置,如果树中已经有要插入的值,则插入失败,
    {
      if (cur->_key < key)
      {
        fathernode = cur;
        cur = cur->_right;
      }
      else if (cur->_key > key)
      {
        fathernode = cur;
        cur = cur->_left;
      }
      else
      {
        return false;
      }
 
    }
 
 
      cur = new node(key); //新插入节点 
 
      if (fathernode->_key < cur->_key) //判断新节点应该是左孩子还是右孩子
      {
        fathernode->_right = cur;
        cur->_FatherNode = fathernode;
 
      }
      else
      {
        fathernode->_left = cur;
        cur->_FatherNode = fathernode;
      }
      //
      
      while (fathernode)//更新平衡因子
      {
 
      if (cur == fathernode->_left)
      {
        fathernode->_bf--;
      }
      else  if (cur == fathernode->_right)
      {
        fathernode->_bf++;
      }
 
 
      //
      if (fathernode->_bf == 0)
      {
        // 更新结束
        break;
      }
 
      else if (fathernode->_bf == 1 || fathernode->_bf == -1)
      {
        // 继续往上更新
        cur = fathernode;
        fathernode = fathernode->_FatherNode;
      }
      else if (fathernode->_bf == 2 || fathernode->_bf == -2)
      {
        // 子树不平衡了,需要旋转
        if (fathernode->_bf == 2 && cur->_bf == 1)
        {
          RevolveLeft(fathernode);//左单旋
        }
        else if (fathernode->_bf == -2 && cur->_bf == -1)
        {
          RevolveRight(fathernode);//右单旋
        }
        else if (fathernode->_bf == 2 && cur->_bf == -1)
        {
          RevolveRightLeft(fathernode); //右左双旋   
          
        }
        else if (fathernode->_bf == -2 && cur->_bf == 1)
        {
          RevolveLeftRight(fathernode);//左右双旋
        }
        else
        {
          assert(false);   //平衡因子出问题了
        }
        
        break;
      }
    
 
  }
 
  return true;
  }
 
}

下面通过代码的细节来深入理解旋转

详解单旋

左单旋

完整代码如下

void RevolveLeft(node *& fathernode)//左单旋      
{
  node* cur = fathernode->_right; //父亲节点的右孩子
 
  fathernode->_right = cur->_left; //更改指向关系
 
  if (cur->_left != nullptr) //特殊情况
    cur->_left->_FatherNode = fathernode;//更改指向关系
 
  cur->_FatherNode = fathernode->_FatherNode;//更改指向关系
 
  if (fathernode->_FatherNode != nullptr) //为空是特殊情况,
  {
 
    if (fathernode->_FatherNode->_right == fathernode)
    {
      fathernode->_FatherNode->_right = cur;//更改指向关系
    }
    else
    {
      fathernode->_FatherNode->_left = cur;//更改指向关系
    }
 
  }
 
  cur->_left = fathernode;//更改指向关系
 
  fathernode->_FatherNode = cur;//更改指向关系
 
  fathernode->_bf = 0; //更新平衡因子
  cur->_bf = 0;
 
}

处理指向关系时,一定不要忘了更改父亲的指向关系

经过左单旋之后,父亲节点和右孩子节点的平衡因子都为 0 ,可参考上文图示。

特殊情况如下,如果不处理特殊情况,程序很容易崩溃

右单旋

void RevolveRight(node *& fathernode) //右单旋
{
  node* cur = fathernode->_left; //父亲节点的左节点
 
  fathernode->_left = cur->_right;//更新指向关系
 
  if (cur->_right != nullptr) //特殊情况
    cur->_right->_FatherNode = fathernode;//更新指向关系
 
  cur->_FatherNode = fathernode->_FatherNode;//更新指向关系
 
  if (fathernode->_FatherNode != nullptr)//特殊情况
  {
 
    if (fathernode->_FatherNode->_right == fathernode)
    {
      fathernode->_FatherNode->_right = cur;//更新指向关系
    }
    else
    {
      fathernode->_FatherNode->_left = cur;//更新指向关系
    }
 
  }
 
 
  cur->_right = fathernode;//更新指向关系
 
  fathernode->_FatherNode = cur;//更新指向关系
 
  fathernode->_bf = 0;//更新平衡因子
  cur->_bf = 0;
}

详解双旋

左右双旋

左右双旋只需复用左单旋和右单旋即可,但平衡因子的更新却比较麻烦

完整代码如下

  void RevolveLeftRight(node *& fathernode)//左右双旋    
  {
    node* fathernodeL = fathernode->_left; //父亲节点的左孩子节点
    node* fathernodeLR = fathernodeL->_right;//父亲节点的左孩子节点的右孩子节点
 
    int bf = fathernodeLR->_bf; //保存平衡因子,实际是为了判断是插入了fathernodeLR左边还是右边还是fathernodeLR本身插入
 
    RevolveLeft(fathernodeL);
    RevolveRight(fathernode);
 
//更新平衡因子
    if (bf == 0)
    {
      fathernode->_bf = 0;
      fathernodeL->_bf = 0;
      fathernodeLR->_bf = 0;
    }
    else if (bf == -1)
    {
      fathernode->_bf = 1;
      fathernodeL->_bf = 0;
      fathernodeLR->_bf = 0;
    }
    else if (bf == 1)
    {
      fathernodeL->_bf = -1;
      fathernode = 0;
      fathernodeLR = 0;
    }
    else
    {
      assert(false);
    }
 
 
  }

平衡因子情况如下

右左双旋

完整代码如下

  void RevolveRightLeft(node *& fathernode) //右左双旋 
  {
    node* fathernodeR = fathernode->_right; 
    node* fathernodeRL = fathernodeR->_left;
 
    int bf = fathernodeRL->_bf;
 
    RevolveRight(fathernodeR);
    RevolveLeft(fathernode);
    if (bf == 0)
    {
      fathernode->_bf = 0;
      fathernodeR->_bf = 0;
      fathernodeRL->_bf = 0;
    }
    else if (bf == 1)
    {
      fathernode->_bf = -1;
      fathernodeR->_bf = 0;
      fathernodeRL->_bf = 0;
    }
    else if (bf == -1)
    {
      fathernodeR->_bf = 1;
      fathernode->_bf = 0;
      fathernodeRL->_bf = 0;
    }
    else
    {
      assert(false); 
    }
  }

平衡因子情况如下

相关文章
|
1月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
49 1
|
2天前
|
存储 Java Serverless
【数据结构】哈希表&二叉搜索树详解
本文详细介绍了二叉搜索树和哈希表这两种数据结构。二叉搜索树是一种特殊二叉树,具有左子树节点值小于根节点、右子树节点值大于根节点的特点,并且不允许键值重复。文章给出了插入、删除和搜索等方法的具体实现。哈希表则通过哈希函数将键名映射为数组下标,实现快速查找,其插入、删除和查找操作时间复杂度理想情况下为O(1)。文中还讨论了哈希函数的设计原则、哈希冲突的解决方法及哈希表的实现细节。
18 8
【数据结构】哈希表&二叉搜索树详解
|
10天前
|
C语言
数据结构基础详解(C语言):图的基本概念_无向图_有向图_子图_生成树_生成森林_完全图
本文介绍了图的基本概念,包括图的定义、无向图与有向图、简单图与多重图等,并解释了顶点度、路径、连通性等相关术语。此外还讨论了子图、生成树、带权图及几种特殊形态的图,如完全图和树等。通过这些概念,读者可以更好地理解图论的基础知识。
|
12天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
12天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
12天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
1月前
|
存储 算法 Linux
【数据结构】树、二叉树与堆(长期维护)(1)
【数据结构】树、二叉树与堆(长期维护)(1)
|
1月前
|
算法
【数据结构】树、二叉树与堆(长期维护)(2)
【数据结构】树、二叉树与堆(长期维护)(2)
【数据结构】树、二叉树与堆(长期维护)(2)
|
10天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
12天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。