程序技术好文:网络编程中的SIGPIPE信号

简介: 程序技术好文:网络编程中的SIGPIPE信号

处理 SIGPIPE


  在网络编程中经常会遇到SIGPIPE信号,默认情况下这个信号会终止整个进程,当然你并不想让进程被SIGPIPE信号杀死。我们不禁会这样思考:


在什么场景下会产生SIGPIPE信号?


要怎样处理SIGPIPE信号?


  SIGPIPE产生的原因是这样的:如果一个 socket 在接收到了 RST packet 之后,程序仍然向这个 socket 写入数据,那么就会产生SIGPIPE信号。


  这种现象是很常见的,譬如说,当 client 连接到 server 之后,这时候 server 准备向 client 发送多条消息,但在发送消息之前,client 进程意外奔溃了,那么接下来 server 在发送多条消息的过程中,就会出现SIGPIPE信号。下面我们看看 server 的代码:


#include


#include [span style="color: rgba(0, 0, 255, 1)">string.h>


#include


#include


#include


#include


#include


#define MAXLINE 1024


void handle_client(int fd)


{


// 假设此时 client 奔溃, 那么 server 将接收到 client 发送的 FIN


sleep(5);


// 写入第一条消息


char msg1【MAXLINE】 = {"first message"};


ssize_t n = write(fd, msg1, strlen(msg1));


printf("write %ld bytes\n", n);


// 此时第一条消息发送成功,server 接收到 client 发送的 RST


sleep(1);


// 写入第二条消息,出现 SIGPIPE 信号,导致 server 被杀死


char msg2【MAXLINE】 = {"second message"};


n = write(fd, msg2, strlen(msg2));


printf("%ld, %s\n", n, strerror(errno));


}


int main()


{


unsigned short port = 8888;


struct sockaddr_in server_addr;


bzero(&server_addr, sizeof(server_addr));


server_addr.sin_family = AF_INET;


server_addr.sin_addr.s_addr = htonl(INADDR_ANY);


server_addr.sin_port = htons(port);


int listenfd = socket(AF_INET , SOCK_STREAM , 0);


bind(listenfd, (struct sockaddr )&server_addr, sizeof(server_addr));


listen(listenfd, 128);


int fd = accept(listenfd, NULL, NULL);


handle_client(fd);


return 0;


}


root@ubuntu:~/c++# ./pipe


write 13 bytes


root@ubuntu:~/c++#


客户端


deamon启动


$ gcc -o server server.c


$ ./server & # 后台运行 server


$ nc localhost 8888 # 运行 nc 连接到 server


^C # Ctrl-C 杀死 nc


write 13 bytes


【1】+ Broken pipe ./server


让我们分析一下整个过程:


client 连接到 server 之后,client 进程意外奔溃,这时它会发送一个 FIN 给 server。


此时 server 并不知道 client 已经奔溃了,所以它会发送第一条消息给 client。但 client 已经退出了,所以 client 的 TCP 协议栈会发送一个 RST 给 server。


server 在接收到 RST 之后,继续写入第二条消息。往一个已经收到 RST 的 socket 继续写入数据,将导致SIGPIPE信号,从而杀死 server。


对 server 来说,为了不被SIGPIPE信号杀死,那就需要忽略SIGPIPE信号:


int main()


{


signal(SIGPIPE, SIG_IGN); // 忽略 SIGPIPE 信号


// ...


}


重新运行上面的程序,server 在发送第二条消息的时候,write()会返回-1,并且此时errno的值为EPIPE,所以这时并不会产生SIGPIPE信号:


char msg2【MAXLINE】 = {"second message"};


n = write(fd, msg2, strlen(msg2));


printf("%ld, %s\n", n, strerror(errno)); // -1, Broken pipe


demo2


server


#include


#include [span style="color: rgba(0, 0, 255, 1)">string.h>


#include


#include //代码效果参考:http://www.jhylw.com.cn/494023547.html


#include


#include


#include


#define SERV_PORT 8000


int main(int argc, const char argv【】)


{


struct sockaddr_in serverAdd;


struct sockaddr_in clientAdd;


bzero(&serverAdd, sizeof(serverAdd));


serverAdd.sin_family = AF_INET;


serverAdd.sin_addr.s_addr = htonl(INADDR_ANY);


serverAdd.sin_port = htons(SERV_PORT);


socklen_t clientAddrLen;


int listenfd = socket(AF_INET, SOCK_STREAM, 0);


int yes = 1;


setsockopt(listenfd,


SOL_SOCKET, SO_REUSEADDR,


(void )&yes, sizeof(yes));


if (listenfd < 0) {


printf("创建socket失败\n");


return -1;


}


int bindResult = bind(listenfd, (struct sockaddr )&serverAdd, sizeof(serverAdd));


if (bindResult < 0) {


printf("绑定端口失败\n");


//代码效果参考:http://www.jhylw.com.cn/015124015.html

close(listenfd);

return -1;


}


listen(listenfd, 20);


int connfd;


unsigned char recvMsg【246988】;


unsigned long long totalSize = 0;


clientAddrLen = sizeof(clientAdd);


connfd = accept(listenfd,(struct sockaddr )&clientAdd,&clientAddrLen);


if (connfd < 0) {


print#include


#include [span style="color: rgba(0, 0, 255, 1)">string.h>


#include


#include


#include


#include


#include


#define SERV_PORT 8000


int main(int argc, const char argv【】)


{


struct sockaddr_in serverAdd;


struct sockaddr_in clientAdd;


bzero(&serverAdd, sizeof(serverAdd));


serverAdd.sin_family = AF_INET;


serverAdd.sin_addr.s_addr = htonl(INADDR_ANY);


serverAdd.sin_port = htons(SERV_PORT);


socklen_t clientAddrLen;


int listenfd = socket(AF_INET, SOCK_STREAM, 0);


int yes = 1;


setsockopt(listenfd,


SOL_SOCKET, SO_REUSEADDR,


(void )&yes, sizeof(yes));


if (listenfd < 0) {


printf("创建socket失败\n");


return -1;


}


int bindResult = bind(listenfd, (struct sockaddr )&serverAdd, sizeof(serverAdd));


if (bindResult < 0) {


printf("绑定端口失败\n");


close(listenfd);


return -1;


}


listen(listenfd, 20);


int connfd;


unsigned char recvMsg【246988】;


unsigned long long totalSize = 0;


clientAddrLen = sizeof(clientAdd);


connfd = accept(listenfd,(struct sockaddr )&clientAdd,&clientAddrLen);


if (connfd < 0) {


printf("连接失败\n");


return -1;


}


else{


// 这里我们用于测试,只接收一个连接


close(listenfd);


}


close(connfd);


return 0;


}f("连接失败\n");


return -1;


}


else{


// 这里我们用于测试,只接收一个连接


close(listenfd);


}


close(connfd);


return 0;


}


client


#include


#include [span style="color: rgba(0, 0, 255, 1)">string.h>


#include


#include


#include


#include


#include


#define SERV_PORT 8000


#define SERV_ADDR "10.10.16.82"


int main(int argc, const char argv【】)


{


struct sockaddr_in serverAdd;


bzero(&serverAdd, sizeof(serverAdd));


serverAdd.sin_family = AF_INET;


serverAdd.sin_addr.s_addr = inet_addr(SERV_ADDR);


serverAdd.sin_port = htons(SERV_PORT);


int connfd = socket(AF_INET, SOCK_STREAM, 0);


int connResult = connect(connfd, (struct sockaddr )&serverAdd, sizeof(serverAdd));


if (connResult < 0) {


printf("连接失败\n");


close(connfd);


return 0;


}


ssize_t writeLen;


char sendMsg【5000】 = {0};


unsigned long long totalSize = 0;


while (1) {


writeLen = write(connfd, sendMsg, sizeof(sendMsg));


if (writeLen < 0) {


printf("发送失败 errno = %s\n",strerror(errno));


return 0;


}


else


{


totalSize += writeLen;


printf("发送成功 totalSize = %ld\n",totalSize);


}


}


close(connfd);


return 0;


}


【root@bogon ~】# ./client


发送成功 totalSize = 5000


发送成功 totalSize = 10000


发送成功 totalSize = 15000


发送成功 totalSize = 20000


发送成功 totalSize = 25000


发送失败 errno = Connection reset by peer


可以看到客户端发送第130001-135000个字节的时候程序在write方法处崩溃,是因为TCP套接字发送缓冲区的大小为131768字节,在发送前130000个字节的时候发送缓冲区还未满,因此write方法返回成功,接着继续发送


假设server和client 已经建立了连接,server调用了close, 发送FIN 段给client,此时server不能再通过socket发送和接收数据,此时client调用read,如果接收到FIN 段会返回0,但client此时还是可以write 给server的,write调用只负责把数据交给TCP发送缓冲区就可以成功返回了,所以不会出错,而server收到数据后应答一个RST段,表示服务器已经不能接收数据,连接重置,client收到RST段后无法立刻通知应用层,只把这个状态保存在TCP协议层。如果client再次调用write发数据给server,由于TCP协议层已经处于RST状态了,因此不会将数据发出,而是发一个SIGPIPE信号给应用层,SIGPIPE信号的缺省处理动作是终止程序。


当一个进程向某个已收到RST的套接字执行写操作时,(此时写操作返回EPIPE错误)内核向该进程发送一个SIGPIPE信号,该信号的默认行为是终止进程,因此进程必须捕获它以免不情愿地被终止;


继续修改客户端程序如下,服务端不变:


【root@bogon ~】# ./client


发送成功 totalSize = 5000


读取失败 errno = 104 and Connection reset by peer


#include


#include [span style="color: rgba(0, 0, 255, 1)">string.h>


#include


#include


#include


#include


#include


#define SERV_PORT 8000


#define SERV_ADDR "10.10.16.82"


int main(int argc, const char argv【】)


{


struct sockaddr_in serverAdd;


bzero(&serverAdd, sizeof(serverAdd));


serverAdd.sin_family = AF_INET;


serverAdd.sin_addr.s_addr = inet_addr(SERV_ADDR);


serverAdd.sin_port = htons(SERV_PORT);


int connfd = socket(AF_INET, SOCK_STREAM, 0);


int connResult = connect(connfd, (struct sockaddr *)&serverAdd, sizeof(serverAdd));


if (connResult < 0) {


printf("连接失败\n");


close(connfd);


return 0;


}


ssize_t writeLen;


char recvMsg【65535】;


ssize_t readLen;


char sendMsg【5000】 = {0};


unsigned long long totalSize = 0;


while (1) {


writeLen = write(connfd, sendMsg, sizeof(sendMsg));


if (writeLen < 0) {


printf("发送失败 errno = %s\n",strerror(errno));

相关文章
|
4天前
|
存储 安全 网络安全
云计算与网络安全:技术融合下的风险与对策
【9月更文挑战第16天】在数字化时代的浪潮中,云计算以其高效、便捷的特点成为企业信息化的首选。然而,云服务的普及也带来了新的网络安全挑战。本文将深入探讨云计算环境中的安全风险,分析云服务模型特有的安全需求,并提出相应的信息安全措施。我们将通过实际案例,了解如何在享受云计算便利的同时,保障数据的安全性和隐私性。
|
2天前
|
自动驾驶 物联网 5G
毫米波技术及其在5G网络中的应用详解
毫米波技术及其在5G网络中的应用详解
19 3
|
2天前
|
自动驾驶 物联网 5G
深入探索5G网络中的网络切片技术及其应用场景
深入探索5G网络中的网络切片技术及其应用场景
34 3
|
1天前
|
存储 安全 网络安全
云计算与网络安全的协同进化:探索云服务中的信息安全技术
【9月更文挑战第19天】 在数字化浪潮中,云计算已成为企业和个人存储、处理数据的心脏。然而,随着其广泛应用,网络安全问题亦步亦趋,成为制约云服务发展的关键因素。本文将深入探讨云计算环境下的网络安全挑战,分析当前信息安全技术的应对策略,并通过实际代码示例,揭示如何在云计算架构中实现安全加固。我们将一同见证,如何在数据流动与保护之间找到平衡点,确保云计算的健康稳定发展。
|
4天前
|
存储 安全 网络安全
云计算与网络安全:技术融合与挑战
【9月更文挑战第16天】随着云计算技术的飞速发展,其便捷性和高效性已经得到了广泛认可。然而,云服务的安全性问题也随之凸显。本文将围绕云计算和网络安全的交叉领域进行探讨,分析云服务中的安全风险,并提出相应的防护措施。同时,通过代码示例,展示如何在实际环境中加强云服务的安全防护。
|
1天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:构建安全防线的关键技术与实践
本文旨在探讨网络安全与信息安全领域的核心要素,包括网络安全漏洞、加密技术以及安全意识的重要性。通过深入分析这些关键技术和概念,旨在为读者提供一套全面的安全防范策略,帮助个人和企业更好地应对日益增长的网络威胁,保护自身信息资产安全。
|
2天前
|
算法 自动驾驶 物联网
解读蜂窝网络中的频谱共享技术
解读蜂窝网络中的频谱共享技术
17 5
|
5天前
|
存储 安全 网络安全
云计算与网络安全:技术融合下的风险与机遇
【9月更文挑战第15天】在数字化浪潮的推动下,云计算已成为企业信息技术架构的核心。然而,随着云服务的广泛应用,网络安全问题也日益凸显。本文将深入探讨云计算环境下的网络安全挑战,分析信息安全的关键技术领域,并提供实用的安全策略和建议。我们将通过案例分析,了解如何在享受云计算带来的便利的同时,保障数据的安全和隐私。
19 3
|
6天前
|
存储 安全 算法
网络安全与信息安全:构建安全防线的关键技术
在数字化时代,网络安全已成为个人、企业乃至国家不可忽视的重要议题。本文旨在探讨网络安全的核心要素——网络安全漏洞、加密技术及安全意识,通过深入浅出的方式,揭示如何有效提升网络安全防护能力,保障信息资产安全。不同于传统的技术堆砌,本文将注重实用性与启发性,引导读者从本质出发,理解并应用这些关键技术,共同构建更加安全的网络环境。
|
7天前
|
边缘计算 网络协议 物联网
探索未来网络:从IPv4到IPv6的技术革新与挑战
本文旨在探讨互联网协议从IPv4向IPv6演进的必然性,分析这一转变背后的技术驱动因素,并阐述IPv6相较于IPv4在地址空间、安全性、效率及未来技术适应性方面的优势。同时,文章也讨论了在IPv4向IPv6过渡过程中面临的主要挑战,包括兼容性问题、网络安全风险、成本考量以及技术实施的复杂性。通过案例分析,本文进一步说明了全球范围内不同规模组织如何成功实施IPv6转换,以及从中学到的经验教训。最后,本文预测了IPv6在未来互联网发展中的潜在影响,强调了其对于支持物联网(IoT)、5G及边缘计算等新兴技术的关键作用,同时指出了仍需解决的开放性问题和研究方向。
15 0