深度分析:Apache Doris及其在大数据处理中的应用

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Apache Doris是一款开源的高性能实时分析数据库,设计用于低延迟SQL查询和实时数据处理,适合大规模实时分析场景。与Apache Druid、ClickHouse和Greenplum相比,Doris在易用性和实时性上有优势,但其他产品在特定领域如高吞吐、SQL支持或数据处理有特长。选型要考虑查询性能、实时性、SQL需求和运维成本。Doris适用于实时数据分析、BI报表、数据中台和物联网数据处理。使用时注意资源配置、数据模型设计、监控调优和导入策略。

引言

在大数据处理领域,实时分析和快速查询能力成为企业决策和业务运营的关键需求。Apache Doris作为一款开源的交互式SQL分析数据库,以其高性能、易用性和灵活性,迅速在大数据生态系统中占据了一席之地。本文将深入分析Doris的核心特点,与其他同类型产品(如Apache Druid、ClickHouse、Greenplum)进行对比,探讨其优缺点、使用场景、选型指南以及使用注意事项。

一、Apache Doris简介

Apache Doris(原名Palo)是由百度开发并开源的实时分析型数据库,专注于提供高性能的交互式SQL查询和实时数据分析。其设计初衷是满足企业对海量数据的实时分析需求,支持高并发的低延迟查询。

核心特点:
  • 高性能:Doris采用MPP(Massively Parallel Processing)架构,支持水平扩展,能够处理PB级别的数据。
  • 实时分析:支持实时数据导入和分析,适用于需要实时数据更新和查询的业务场景。
  • 易用性:兼容MySQL协议,支持标准SQL,用户可以轻松上手,无需学习新的查询语言。
  • 灵活性:支持多种数据模型,包括明细模型、聚合模型和更新模型,满足不同业务需求。

二、与其他同类产品的对比

1. Apache Druid

Apache Druid是一个开源的分布式数据存储系统,专为OLAP(Online Analytical Processing)查询设计,适用于实时数据分析和大规模数据聚合。

优点

  • 高吞吐量:Druid能够处理高吞吐量的数据导入和查询,适用于大规模数据分析。
  • 实时数据摄取:支持实时数据摄取和分析,提供低延迟的查询响应。
  • 灵活的索引机制:支持多种索引类型(如时间索引、维度索引),优化查询性能。

缺点

  • 复杂性:Druid的架构较为复杂,包含多个组件(如协调器、历史节点、实时节点等),部署和运维成本较高。
  • SQL支持有限:Druid的SQL支持不如Doris全面,某些复杂查询可能需要自定义实现。
2. ClickHouse

ClickHouse是由俄罗斯Yandex开发的一款开源列式数据库,专为OLAP查询优化,具有极高的查询性能。

优点

  • 极高的查询性能:ClickHouse采用列式存储和向量化执行,能够实现极高的查询速度。
  • 高压缩比:支持多种压缩算法,有效减少存储空间需求。
  • 灵活的分布式架构:支持分布式查询和数据分片,能够处理大规模数据。

缺点

  • 实时性不足:ClickHouse在实时数据导入和更新方面表现不如Doris,适用于批量数据分析。
  • 运维复杂:ClickHouse的分布式架构和高性能优化需要深入理解和调优,运维成本较高。
3. Greenplum

Greenplum是由Pivotal(现归属VMware)开发的开源数据仓库,基于PostgreSQL,支持大规模数据分析和处理。

优点

  • 丰富的SQL支持:基于PostgreSQL,Greenplum支持完整的SQL功能和扩展。
  • 强大的数据处理能力:支持复杂查询和大规模数据处理,适用于企业级数据仓库。
  • 成熟的生态系统:拥有丰富的工具和社区支持,易于集成和扩展。

缺点

  • 实时性较差:Greenplum主要面向批量数据处理,实时数据分析能力不如Doris。
  • 扩展性限制:虽然支持MPP架构,但在极大规模数据处理方面,扩展性和性能可能不如专门为实时分析设计的系统。

三、使用场景

Doris适用于以下几种主要场景:

  1. 实时数据分析:如在线广告点击流分析、实时用户行为分析等,要求低延迟和高并发查询。
  2. 交互式BI报表:支持多维分析和快速响应的BI报表系统,提升数据分析效率。
  3. 数据中台:作为企业数据中台的一部分,提供统一的实时数据分析能力。
  4. 物联网数据处理:处理和分析物联网设备产生的海量实时数据,支持快速决策和响应。

四、选型指南

在选择适合的分析数据库时,需要考虑以下几个因素:

  1. 查询性能:对于需要极高查询性能的场景,ClickHouse是一个不错的选择;而Doris在高并发和低延迟查询方面表现出色。
  2. 实时性:如果对实时数据导入和分析有较高要求,Doris和Druid是更好的选择。
  3. SQL支持:如果需要全面的SQL支持和复杂查询,Greenplum和Doris是合适的选择。
  4. 运维成本:考虑系统的部署和运维复杂性,Doris相对较为简单易用,而Druid和ClickHouse的运维成本较高。

五、使用注意事项

  1. 资源配置:合理配置Doris集群的资源,确保查询性能和数据导入速度。
  2. 数据模型设计:根据业务需求设计合适的数据模型,优化查询性能和存储效率。
  3. 监控和调优:定期监控Doris集群的运行状态,进行必要的性能调优,确保系统稳定运行。
  4. 数据导入策略:选择合适的数据导入策略,平衡实时性和性能需求。

结论

Apache Doris在大数据实时分析领域具有显著优势,其高性能、低延迟和易用性使其成为许多实时数据分析应用的首选。与其他同类产品相比,Doris在实时数据导入和高并发查询方面表现出色,但在复杂查询和生态系统支持上略逊一筹。选择合适的分析数据库需要根据具体应用场景和需求进行权衡,充分考虑查询性能、实时性、SQL支持和运维成本等因素。通过合理的配置和优化,可以充分发挥Doris的优势,实现高效、稳定的实时数据分析。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
25天前
|
存储 SQL Apache
Apache Doris 创始人:何为“现代化”的数据仓库?
3.0 版本是 Apache Doris 研发路程中的重要里程碑,他将这一进展总结为“实时之路”、“统一之路”和“弹性之路”,详细介绍了所对应的核心特性的设计思考与应用价值,揭晓了 2025 年社区发展蓝图
Apache Doris 创始人:何为“现代化”的数据仓库?
|
27天前
|
SQL 存储 数据处理
别让你的CPU打盹儿:Apache Doris并行执行原理大揭秘!
别让你的CPU打盹儿:Apache Doris并行执行原理大揭秘!
72 1
别让你的CPU打盹儿:Apache Doris并行执行原理大揭秘!
|
17天前
|
存储 SQL 监控
计算效率提升 10 倍,存储成本降低 60%,灵犀科技基于 Apache Doris 建设统一数据服务平台
灵犀科技早期基于 Hadoop 构建大数据平台,在战略调整和需求的持续扩增下,数据处理效率、查询性能、资源成本问题随之出现。为此,引入 [Apache Doris](https://doris.apache.org/) 替换了复杂技术栈,升级为集存储、加工、服务为一体的统一架构,实现存储成本下降 60%,计算效率提升超 10 倍的显著成效。
计算效率提升 10 倍,存储成本降低 60%,灵犀科技基于 Apache Doris 建设统一数据服务平台
|
2月前
|
存储 消息中间件 分布式计算
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
Cisco WebEx 早期数据平台采用了多系统架构(包括 Trino、Pinot、Iceberg 、 Kyuubi 等),面临架构复杂、数据冗余存储、运维困难、资源利用率低、数据时效性差等问题。因此,引入 Apache Doris 替换了 Trino、Pinot 、 Iceberg 及 Kyuubi 技术栈,依赖于 Doris 的实时数据湖能力及高性能 OLAP 分析能力,统一数据湖仓及查询分析引擎,显著提升了查询性能及系统稳定性,同时实现资源成本降低 30%。
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
|
1月前
|
SQL 存储 Apache
Apache Doris 3.0.3 版本正式发布
亲爱的社区小伙伴们,Apache Doris 3.0.3 版本已于 2024 年 12 月 02 日正式发布。该版本进一步提升了系统的性能及稳定性,欢迎大家下载体验。
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
1月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
343 33
The Past, Present and Future of Apache Flink
|
3月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
945 13
Apache Flink 2.0-preview released
|
3月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
144 3
|
4月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。

推荐镜像

更多