ModelScope联手OpenDataLab:直接调用7000+开源数据集,赋能AI模型加速研发

简介: 魔搭社区和OpenDatalab浦数合作,共同开启一场模型与数据的深度融合,旨在为中国开发者打造更加高效、开放的AI体验。

引言

OpenDataLab浦数 人工智能开放数据平台,是上海人工智能实验室在WAIC 2022科学前沿全体会议上发布“OpenXLab浦源”人工智能开源开放体系的核心项目之一。

OpenDataLab作为人工智能数据领域的探路者和开源数据社区的倡导者,围绕大模型数据开展多项前沿技术探索,构建面向大模型研发全流程的数据平台及大模型时代数据管理体系。

全新的OpenDataLab浦数人工智能开放数据平台汇聚了海量的数据资源,包括覆盖800多种任务类型的7,000多个数据集,并提供便捷检索和快速下载服务。

魔搭社区和OpenDatalab浦数合作,共同开启一场模型与数据的深度融合,旨在为中国开发者打造更加高效、开放的AI体验。

  1. 一站式开发体验:魔搭社区作为领先的模型开源平台,汇聚了丰富的行业模型和大规模预训练。而OpenDatalab以其高质量、多样化的数据集闻名,此次合作将实现模型与数据的无缝对接,为开发者提供从数据获取、模型训练到部署应用的一站式解决方案,极大提升开发效率。
  2. 增强的创新能力:结合魔搭社区的领先的模型和OpenDatalab的广泛数据集,开发者可以轻松尝试更多的预训练,微调等模型算法,快速验证模型的效果,以及推动模型落地千行百业,降低创新门槛,加速从想法到产品的转化过程。

在魔搭社区使用OpenDataLab数据集

下载和加载OpenDataLab数据集

OpenDataLab和魔搭社区在底层数据存储和交换链路、数据集meta信息表征、数据展现、ToolKit等几个技术层面,实现了互联互通;用户可以在ModelScope魔搭社区使用git和sdk的方式来下载从OpenDataLab迁移过来的数据;同时,对于部分大型数据集,OpenDataLab提供了数据meta信息、数据下载接口,在魔搭平台上透出。

总的来说,用户可以通过以下三种方式来下载和使用OpenDataLab的数据集:

  1. 使用git来下载和管理数据集,我们以LAMM数据集为例,其数据卡片参考:https://modelscope.cn/datasets/Shanghai_AI_Laboratory/LAMM/summary,使用git命令:
GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/datasets/Shanghai_AI_Laboratory/LAMM.git
git lfs pull

image.gif

来实现数据文件的下载和版本管理。

  1. 使用sdk加载数据

对于符合魔搭数据集组织结构规范的OpenDataLab数据集,我们也可以使用ModelScope SDK的MsDataset模块来加载数据集,具体使用方式:

# Install modelscope
pip install modelscope
# Load & manage dataset
from modelscope.msdatasets import MsDataset
ds =  MsDataset.load('Shanghai_AI_Laboratory/LAMM')

image.gif

此时,数据集被下载到本地缓存,数据被组织为不同的subset、split(如train、test、validation),支持对ds对象(通常为DatasetDict或Dataset格式)的遍历、filter、map等操作。

  1. 使用OpenDataLab原生的数据集下载工具:在此种模式下,OpenDataLab数据集的元信息、数据卡片、数据标签等内容会托管在魔搭平台,而底层真实的数据扔存储在OpenDataLab上,此时可通过openxlab命令实现数据集的下载操作:
# Install openxlab
pip install openxlab
# Download dataset
openxlab dataset download --dataset-repo <dataset-repo>

image.gif

使用OpenDataLab数据集微调模型

与大多数魔搭数据一样,当OpenDataLab数据集可以使用ModelScope sdk加载时,即可以使用ModelScope SWIFT高效微调工具来训练你的模型。

  1. 环境准备
pip install modelscope -U
pip install ms-swift -U

image.gif

  1. OpenDataLab多模态数据集LAMM

image.gif

LAMM数据集是上海人工智能实验室开源的一个多模态数据集,包括一个包含 186,098 个图像语言指令-响应对的图像指令调整数据集和一个包含 10,262 个点云语言指令-响应对的点云指令调整数据集。 该数据集从公开可用的数据集中收集图像和点云,并使用 GPT API 和自我指导方法根据这些数据集中的原始标签生成指令和响应。 该数据有以下特性:

  • 添加了更多视觉信息,例如视觉关系和细粒度类别作为 GPT API 的输入
  • 观察到现有的 MLLM 可能难以理解视觉任务指令。 为了解决这个问题,设计了一种将视觉任务注释转换为指令-响应对的方法,从而增强了 MLLM 对视觉任务指令的理解和泛化
  • LAMM-Dataset 还包括用于常识性知识问答的数据对,方法是结合来自 Bamboo 数据集的分层知识图标签系统和相应的维基百科描述。
  1. 训练GLM4v

这里我们使用LAMM多模态数据集来微调GLM4-V模型,即glm4v-9b-chat;微调框架为ModelScope SWIFT。以下是具体步骤:

获取代码

git clone git@github.com:modelscope/swift.git

 

数据准备

由于LAMM并未集成到SWIFT数据集中,这里我们走自定义形式。将LAMM数据配置加入到SWIFT dataset_info.json中:

编辑swift/llm/data/dataset_info.json

"opendatalab-LAMM": {
        "dataset_id": "Shanghai_AI_Laboratory/LAMM",
        "hf_dataset_id": "",
        "subsets": ["LAMM_instruct_98k"],
        "split": ["train"],
        "conversations": {
            "user_role": "human",
            "assistant_role": "gpt",
            "conversations_key": "conversations",
            "from_key": "from",
            "value_key": "value",
            "error_strategy": "delete",
            "media_type": "image",
            "media_key": "image"
        },
        "tags": ["multi-modal"]
    }

image.gif

  • 这里subset使用了LAMM_instruct_98k
  • conversations_key取LAMM数据集的subset LAMM_instruct_98k中的conversations字段

配置完成后,执行 pip install -e .

执行训练

# Experimental environment: A100
# 40GB GPU memory
# limit 10000
CUDA_VISIBLE_DEVICES=0 swift sft --model_type glm4v-9b-chat --dataset opendatalab-LAMM#10000

image.gif

train loss

image.gif

eval acc

image.gif

点击链接👇查看原文

https://modelscope.cn/datasets/Shanghai_AI_Laboratory/LAMM/summary?from=alizishequ__text

相关文章
|
7天前
|
人工智能 自然语言处理 算法
AI 对研发流程的变革
AI编程助手通过自然语言生成代码、解释复杂算法、优化代码等,极大提升了开发效率与代码质量。开发者可利用通义灵码进行代码解释、生成注释及单元测试,简化开发流程。在需求分析、设计、编码、测试到部署的全流程中,AI助手表现优异,尤其在编码和测试阶段显著提高工作效率。尽管目前AI助手在需求分析方面尚需改进,但其未来发展潜力巨大,有望逐步替代部分人力工作。体验地址:[阿里云智能编码](https://www.aliyun.com/solution/tech-solution/intelligent-coding)。
|
5天前
|
人工智能 算法 测试技术
AI 研发产品进化论:从 AI 编码助手到 AI 程序员
本次分享由阿里云资深技术专家陈鑫主讲,主题为“AI研发产品进化论:从AI编码助手到AI程序员”。内容涵盖通义灵码在落地过程中的挑战与突破,包括精准度提升、企业级检索增强、自定义扩展及智能体的应用。通过全工程理解、个性化适配和智能体的引入,通义灵码已实现代码补全、单元测试生成、缺陷修复等核心功能,并显著提升了开发者的工作效率。目前,通义灵码已在Vs Code和JetBrains插件市场上获得超过500万次下载,月均采纳率超过30%,并持续优化中。
44 9
|
15天前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
57 10
|
26天前
|
人工智能 安全 搜索推荐
AI 驱动研发模式升级,蓝凌软件探索效率提升之道
蓝凌软件在引入通义灵码后取得了较明显的效果。目前,蓝凌软件已使用灵码的开发人员中,周活跃用户占比超过90%、根据代码库自动生成的代码占比超33%、代码智能补全占比29%,代码注释率提升了15%,有效提升了产品代码工程化的效能。
|
1月前
|
人工智能 搜索推荐 安全
数百名研发人员用通义灵码,33%新增代码由AI生成,信也科技研发模式焕新升级
目前,信也科技数百名研发人员正在使用通义灵码,周活跃用户占比70%,新增代码中有33%由通义灵码编写,整体研发效率提升了11%,真正实现了数百研发人员开发效能的全面提升。
|
2月前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
153 4
|
2月前
|
人工智能 测试技术 Serverless
AI编码,十倍提速,通义灵码引领研发新范式
欢迎参加通义灵码智能开发流程活动,通过在线部署和上传截图,即可获得新年好运日历,限量30个,先到先得!活动时间从即日起至2024年12月13日24:00。快来报名吧!
|
3月前
|
机器学习/深度学习 人工智能 算法
介绍一下AI在药物研发中的应用。
【10月更文挑战第16天】介绍一下AI在药物研发中的应用。
173 0
|
2月前
|
人工智能 自然语言处理 测试技术
通义千问AI来提高研发效率
【10月更文挑战第21天】
|
3月前
|
机器学习/深度学习 人工智能 算法
AI在药物研发中还有哪些应用场景呢
【10月更文挑战第16天】AI在药物研发中还有哪些应用场景呢
707 0