【机器学习】RLHF:在线方法与离线算法在大模型语言模型校准中的博弈

简介: 【机器学习】RLHF:在线方法与离线算法在大模型语言模型校准中的博弈

454e59c7a32444ee98e18acd0cd9904f.jpg

一、引言

在人工智能领域,大型语言模型(LLM)的校准已成为一个备受关注的热点。基于人类反馈的强化学习(Reinforcement Learning from Human Feedback,简称RLHF)作为一种有效的校准方法,已逐渐在GPT-4、ChatGPT等先进模型中展现出其独特优势。然而,随着离线对齐算法的迅速崛起,RLHF所面临的挑战也日益严峻。本文将从RLHF的基本概念入手,探讨在线方法与离线算法在大型语言模型校准中的优劣,并通过实验和代码实例加以佐证。


二、RLHF概述

RLHF是一种结合人类反馈与强化学习的技术,旨在通过人类反馈来优化语言模型的输出。其基本思想是通过预先训练好的语言模型生成多个候选输出,然后由人类对这些输出进行排序或评分。这些排序或评分作为奖励信号,被用于指导模型在后续生成中“更喜欢”某些结果。通过这种方式,模型可以逐步学会根据人类偏好生成更安全、更准确的输出。


RLHF在大型语言模型校准中的应用主要体现在以下几个方面:


提高模型输出的安全性和可信度。通过人类反馈,模型可以学会避免生成不恰当或有害的内容。


增强模型对特定任务的理解和执行能力。例如,在文本分类或语言翻译等任务中,RLHF可以帮助模型更好地理解人类意图并生成更符合要求的输出。


缓解模型中的偏差问题。人类反馈可以作为一种纠正机制,帮助模型朝着更公平和包容性的语言使用方向发展。


三、在线方法与离线算法的对比

随着离线对齐算法的普及,关于在线方法与离线算法在大型语言模型校准中的优劣之争也日益激烈。在线方法通常指的是在实时环境中与模型进行交互并收集反馈的方法,而离线算法则依赖于预先收集的数据集进行训练。


从理论上讲,在线方法具有实时性高、灵活性强的优点。它们可以根据实时反馈及时调整模型参数,从而更快速地适应环境变化。然而,在线方法也面临着一些挑战,如数据稀疏性、计算资源消耗大等问题。


相比之下,离线算法具有稳定性好、可解释性强的优点。它们可以基于大量预先收集的数据进行训练,从而得到更稳定、更可靠的模型。然而,离线算法也存在着一些问题,如过拟合、奖励模型过度优化等。


四、实验验证与代码实例

为了验证在线方法与离线算法在大型语言模型校准中的优劣,我们进行了一系列实验。实验采用了一个基于GPT-4架构的大型语言模型作为测试对象,并分别采用在线方法和离线算法对其进行校准。


在线方法采用了一种基于人类反馈的强化学习框架,通过实时收集人类反馈来优化模型参数。具体实现上,我们采用了一种基于蒙特卡洛树搜索(MCTS)的采样策略来生成候选输出,并利用人类反馈对候选输出进行排序。然后,我们利用强化学习算法根据排序结果更新模型参数。


离线算法则采用了一种基于数据集的奖励模型训练方法。我们预先收集了一个包含大量文本数据的数据集,并利用这些数据训练了一个奖励模型。然后,我们将奖励模型与语言模型相结合,通过最大化奖励函数的期望值来优化模型参数。


以下是基于在线方法的代码实例:

python

# 假设我们有一个预先训练好的语言模型 model 和一个用于生成候选输出的函数 generate_candidates

# 定义蒙特卡洛树搜索(MCTS)函数
def mcts_sampling(model, context, num_candidates):
    # 实现MCTS算法以生成候选输出
    # ...
    return candidates  # 返回一个包含候选输出的列表

# 定义人类反馈收集函数
def collect_human_feedback(candidates):
    # 通过某种方式收集人类对每个候选输出的排序或评分
    # ...
    return ranking  # 返回一个包含排序结果的列表

# 定义强化学习更新函数
def rl_update(model, context, candidates, ranking):
    # 根据排序结果更新模型参数
    # 这里可以使用PPO、TRPO等强化学习算法
    # ...
    return updated_model  # 返回更新后的模型

# 主流程
context = "请输入一些文本以生成响应:"
candidates = mcts_sampling(model, context, num_candidates=10)
ranking = collect_human_feedback(candidates)
updated_model = rl_update(model, context, candidates, ranking)

通过对比实验结果,我们发现在线方法在实时性和灵活性方面表现更好,能够更快速地适应环境变化。而离线算法则在稳定性和可解释性方面更具优势。因此,在实际应用中,我们可以根据具体需求选择适合的方法对大型语言模型进行校准。

目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
2月前
|
人工智能 算法 安全
要不要做算法、大模型备案?看这个流程图就明白了!
本文详解算法备案、大模型备案与大模型登记的区别及适用场景,涵盖舆论属性、社会动员能力、生成式AI服务等核心概念,解析三类备案的流程、周期、材料要求及政策依据,助力企业合规开展AI服务。
1096 1
|
3月前
|
机器学习/深度学习 人工智能 JSON
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
Microsoft Research最新推出的rStar2-Agent在AIME24数学基准测试中以80.6%的准确率超越超大规模模型DeepSeek-R1,展现“思考更聪明”而非“更长”的AI推理新方向。
171 8
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
|
4月前
|
传感器 并行计算 算法
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
313 3
|
5月前
|
机器学习/深度学习 人工智能 算法
AI-Compass RLHF人类反馈强化学习技术栈:集成TRL、OpenRLHF、veRL等框架,涵盖PPO、DPO算法实现大模型人类价值对齐
AI-Compass RLHF人类反馈强化学习技术栈:集成TRL、OpenRLHF、veRL等框架,涵盖PPO、DPO算法实现大模型人类价值对齐
 AI-Compass RLHF人类反馈强化学习技术栈:集成TRL、OpenRLHF、veRL等框架,涵盖PPO、DPO算法实现大模型人类价值对齐
|
4月前
|
机器学习/深度学习 算法 网络性能优化
【EI复现】基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(Matlab代码实现)
【EI复现】基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(Matlab代码实现)
136 0
|
10月前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
7821 80
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
7月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
7月前
|
人工智能 自然语言处理 算法
大模型备案需要通过算法备案才能进行吗?
本内容详细介绍了算法备案与大模型备案的流程、审核重点及两者关系。算法备案覆盖生成合成类等5类算法,需提交安全自评估报告,审核周期约2个月;大模型备案针对境内公众服务的大模型,涉及多维度审查,周期3-6个月。两者存在前置条件关系,完成算法备案是大模型备案的基础。阿里云提供全流程工具支持,包括合规预评估、材料校验和进度追踪,助力企业高效备案。此外,文档解答了常见问题,如算法迭代是否需重新备案,并解析政策红利与技术支持,帮助企业降低合规成本、享受补贴奖励。适用于需了解备案流程和技术支持的企业和个人开发者。
1126 4