c++高级篇(二) ——Linux下IO多路复用之select模型

简介: c++高级篇(二) ——Linux下IO多路复用之select模型

什么是IO多路复用

前言

我们在Linux上服务端一般是要同时连接多个客户端进行通信,但是为每一个客户端连接创建一个进/线程,会消耗很多资源,一个1核2GB的虚拟机,大概只能创建100多个线程,但是我们经常使用网络知道,这样是远远不能满足我们日常的使用需求的,所以为了解决这一问题,就需要我们去使用IO多路复用。

IO多路复用

IO多路复用指的是我们可以使用一个进/线程去处理多个TCP链接,减少系统开销,而我们常见的IO多路复用主要用三种:

  • select(1024)
  • poll(几千)
  • epoll(百万)

网络通讯中的读与写事件

读事件

  • 已连接队列中有已经准备好的socket(有新的客户端连接上来)
  • 接收缓存有数据可以读(对端发送的报文已经送达)
  • tcp连接断开(对端使用close()函数断开了连接)

写事件

  • 发送端缓冲区没有满,可以写入数据(向对端发送报文)

select模型

位图

  • 什么是位图
    select实现IO多路复用是基于位图来实现的,位图的本质是一个32位整型数组(int[32]),一个32位整型有4个字节,每个字节有8个位:
    32 ∗ 8 ∗ 4 = 1024 32*8*4=10243284=1024
    每一个位可以监听一个socket这也是select模型课件监听1024个socket的原因所在。
  • 位图的相关操作
    Linux内核中为我们提供相关的宏让我们操作位图:
void D_CLR(int fd,fd_set* set);//将socket从位图中删除
int FD_ISSET(int fd,fd_set *set);//判断socket是否在位图中
void FD_SET(int fd,fd_set* set);//将socket加入到位图中
void FD_ZERO(fd_set* set); //将位图全部初始化为0

select模型的细节

写事件

  • 如果tcp的发送缓冲区没有满,那么此时socket连接是可写的
  • 一般来说发送缓冲区不容易填满,但是如果发送数据量过大或者网络带宽不够,发送缓冲区有填满的可能。

水平触发

  • select()监视的socket如果发生了事件,select()会返回(通知应用程序处理事件),如果事件没有被处理,再次调用select()的时候会立即再通知
  • 存在的问题
  • 这里操作位图的方法是轮询,它的性能会随着socket的增多而增多
  • 每次调用select,需要拷贝位图,而且select属于用户态,网络通信属于内核态,需要拷贝两次,会影响select的性能
  • 受位图大小的限制,每个进/线程selectt所能处理的socket数量默认是1024个,性能不够高,无法处理网络通信频繁的实际场景

select模型监控socket通讯流程图

代码示例

#include "data-sharing-center/public/_cmpublic.h"
#include <string.h>
using namespace std;
int inintserver(int port); //初始化监听端口
int main(int argc,char* argv[])
{
    if(argc!=2)
    {
        cout<<"using example:./server [port]"<<endl;
        return -1;
    }
    //初始化服务端用来监听的socket
    int listensock=inintsocket(atoi(argv[1]));
    if(listensock<0)
    {
        perror("inintsocket() error");
        return -1;
    }
    cout<<"listensock="<<listensock<<endl;
    //初始化select
    fd_set readfds;
    FD_ZERO(&readfds);
    FD_SET(listensock,&readfds);
    int maxfd=listensock;//记录当前监听socket的数量
    while(true)  //使用select循环监听
    {
        //定义超时结构体
        struct timeval timeout;  //定义超时结构体
        timeout.tv_sec=10; //秒
        timeout.tv_usec=0; //微妙
        fd_set tmps=readfds;  //select操作中会对位图进行修改,创建一个临时位图
        int infds=select(maxfd+1,&tmps,NULL,NULL,&timeout);  //开启监听
        if(infds<0)   //连接失败
        {
            perror("select() error");
            break;
        }
        else if(infds==0)  //超时(此时间段没有事件发生)
        {
            cout<<"select timeout"<<endl;
            continue;
        }
        else    //有事件发生
        {
            //遍历位图,查看是哪一个socket发生事件
            for(int eventfd=0;eventfd<=maxfd;eventfd++)
            {
                if(FD_ISSET(eventfd,&tmps))    //查看是否是该socket
                {
                    if(eventfd=listensock)   //如果是监听,说明发生的事件是有客户顿socket发送了连接请求
                    {
                        //接收客户端连接
                        struct sockaddr_in clientaddr;
                        socklen_t addrlen=sizeof(clientaddr);
                        int clientsock=accept(listensock,(struct sockaddr*)&clientaddr,&addrlen);
                        if(clientsock<0)
                        {
                            perror("accept() error");
                            continue;
                        }
                        cout<<"client connected,clientsock:"<<clientsock<<endl;
                        //将新的客户端socket加入位图
                        FD_SET(clientsock,&readfds);
                        if(clientsock>maxfd)
                        {
                            maxfd=clientsock;
                        }
                    }
                    else   //否则就是客户端向服务端发送了数据,或者有客户端断开了连接
                    {
                        char buffer[1024]; //用来接收数据
                        memset(buffer,0,sizeof(buffer));
                        if(recv(eventfd,buffer,sizeof(buffer),0)<0)   //说明是有客户端断开了
                        {
                            cout<<"client disconnected,clientfd="<<eventfd<<endl;
                            close(eventfd);
                            FD_CLR(eventfd,&tmps);
                            if(maxfd==eventfd);  //重新计算maxfd的值,注意,只有当eventfd==maxfd时才需要计算。
                            {
                                for(int ii=maxfd;ii>0;ii--)
                                {
                                    if(FD_ISSET(ii,&readfds))
                                    {
                                        maxfd=ii;
                                        break;
                                    }
                                }
                            }
                        }
                        else   //说明是有客户端发送了数据
                        {
                            cout<<"client data:"<<buffer<<endl;
                            send(eventfd,buffer,strlen(buffer),0);  //把数据发送回去说明已经收到了
                        }
                    }   
                }
            }
        }
    }
    return 0;
}
int inintsocket(int port)
{
    int sock=socket(AF_INET,SOCK_STREAM,0);
    if(sock<0)
    {
        perror("socket() error");
        return -1;
    }
    //设置端口复用
    int opt=1;
    unsigned int len=sizeof(opt);
    setsockopt(sock,SOL_SOCKET,SO_REUSEADDR,&opt,len);
    //绑定端口
    struct sockaddr_in serveraddr;
    serveraddr.sin_family=AF_INET;
    serveraddr.sin_port=htons(port);
    serveraddr.sin_addr.s_addr=htonl(INADDR_ANY);
    if(bind(sock,(struct sockaddr*)&serveraddr,sizeof(serveraddr))<0)
    {
        perror("bind() error");
        close(sock);
        return -1;
    }
    //监听
    if(listen(sock,5)<0)
    {
        perror("listen() error");
        close(sock);
        return -1;
    }
    return sock;
}

注意: 这里的头文件是博主自己封装的,大家可以使用’man+函数名的方式查看相关函数所需的头文件。

相关文章
|
22天前
|
缓存 安全 Linux
Linux 五种IO模型
Linux 五种IO模型
|
27天前
|
网络协议 Linux 数据安全/隐私保护
在Linux中,TCP/IP 的七层模型有哪些?
在Linux中,TCP/IP 的七层模型有哪些?
|
29天前
|
Linux 数据安全/隐私保护
在Linux中,什么是文件权限?什么是rwx权限模型?
在Linux中,什么是文件权限?什么是rwx权限模型?
|
1月前
|
Linux 开发者
Linux源码阅读笔记18-插入模型及删除模块操作
Linux源码阅读笔记18-插入模型及删除模块操作
|
27天前
|
Kubernetes Linux API
在Linux中,LVS-DR模型的特性是什么?
在Linux中,LVS-DR模型的特性是什么?
|
27天前
|
负载均衡 算法 Linux
在Linux中,LVS-NAT模型的特性是什么?
在Linux中,LVS-NAT模型的特性是什么?
|
30天前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
2月前
|
Java 大数据
解析Java中的NIO与传统IO的区别与应用
解析Java中的NIO与传统IO的区别与应用
|
29天前
|
Java 数据处理
Java IO 接口(Input)究竟隐藏着怎样的神秘用法?快来一探究竟,解锁高效编程新境界!
【8月更文挑战第22天】Java的输入输出(IO)操作至关重要,它支持从多种来源读取数据,如文件、网络等。常用输入流包括`FileInputStream`,适用于按字节读取文件;结合`BufferedInputStream`可提升读取效率。此外,通过`Socket`和相关输入流,还能实现网络数据读取。合理选用这些流能有效支持程序的数据处理需求。
25 2
|
30天前
|
XML 存储 JSON
【IO面试题 六】、 除了Java自带的序列化之外,你还了解哪些序列化工具?
除了Java自带的序列化,常见的序列化工具还包括JSON(如jackson、gson、fastjson)、Protobuf、Thrift和Avro,各具特点,适用于不同的应用场景和性能需求。