深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数(1)

简介: 深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数

前言

行人检测追踪与流量计数系统在城市规划、公共安全和商业分析等多个领域扮演着重要角色。该系统的实施能够提供高精准的行人流量数据,从而帮助城市管理者更好地理解和分析人流动态,预测拥挤情况,并采取适当措施以改善公共空间的使用效率和安全。利用最新的YOLOv8图像识别和ByteTrack跟踪算法,该系统在复杂的城市环境中也能准确地追踪行人流动,并进行有效计数。

行人检测追踪与流量计数系统的应用场景包括

城市交通管理:监测交叉口或街道的行人流量和流向,为信号灯控制提供依据。

零售店铺客流分析:统计进出店铺的顾客人数,分析高峰时段,优化店铺运营。

公共活动的人流组织:在体育赛事、音乐节等活动中监控人群密度,确保公共安全。

旅游区域管理:评估热门旅游点的人流量,便于资源配备和管制措施的实施。

公共交通站点规划:分析城市交通枢纽的人流模式,指导站点的设计和改造。

紧急疏散计划:在紧急情况下快速评估撤离行人数,帮助制定疏散方案。

总之,行人检测追踪与流量计数系统对于实现现代城市的智能化管理具有重大的实践和理论价值。它为行人流量的监测与分析提供了一种自动化、高效与精确的方法,能够帮助决策者作出更为科学合理的规划和应对策略,提高城市公共空间的运营质量和居民的生活便利性。随着人工智能技术的进一步发展,这类系统未来的应用潜力将会更加广泛。

博主通过搜集行人的相关数据图片,根据YOLOv8的目标检测与ByteTrack多目标追踪技术,并且可以自行绘制任意方向线段进行过线计数统计。最终基于python与Pyqt5开发了一款界面简洁的行人检测追踪与双向流量计数系统,可支持视频以及摄像头检测本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 支持视频与摄像头中的行人多目标检测追踪;
2. 可自行绘制任意方向线段,实现双向的过线计数统计,默认从下到上、从左向右为正向,另一个方向为反向;
3. 界面可实时显示双向过线数量通行总数检测帧率检测时长等信息;
4. 可选择画面中是否显示追踪轨迹显示检测框显示检测标签

注:本系统过线计数是依据目标中心点是否过线为判断依据的。

界面参数设置说明

  1. 显示追踪轨迹:用于设置检测的视频中是否显示目标追踪轨迹,默认勾选:表示显示追踪轨迹,不勾选则不显示追踪轨迹;
  2. 显示检测框:用于设置检测的视频中是否显示目标检测框,默认勾选:表示显示检测框,不勾选则不显示检测框;
  3. 显示标签:用于设置检测的视频中是否显示目标标签,默认勾选:表示显示检测标签,不勾选则不显示检测标签;
  4. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  5. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

显示追踪轨迹显示检测框显示标签选项的功能效果如下:

(1)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频

2.打开视频后,点击绘制线段,用鼠标左键在显示的界面上分别点两个点,用于绘制用于过线计数的线段;

3.两个点绘制完成后,点击绘制完成按钮,即可实现对视频中过线目标的双向计数与统计

注:此时界面中显示的检测时长:表示当前已经检测的视频时间长度【与检测速度有关】,不是现实中已经过去的时间

(2)摄像头检测演示

1.点击打开摄像头图标,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头

2.打开摄像头后,点击绘制线段,用鼠标左键在显示的界面上分别点两个点,用于绘制用于过线计数的线段;

3.两个点绘制完成后,点击绘制完成按钮,即可实现对视频中过线目标的双向计数与统计。

注:此时界面中显示的检测时长:表示当前已经检测的视频时间长度【与检测速度有关】,不是现实中已经过去的时间

二、目标检测模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的深度学习技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

YOLO各版本性能对比:

Yolov8主要创新点

Yolov8主要借鉴了Yolov5、Yolov6、YoloX等模型的设计优点,其本身创新点不多,偏重在工程实践上,具体创新如下:

  1. 提供了一个全新的SOTA模型(包括P5 640和P6 1280分辨率的目标检测网络和基于YOLACT的实例分割模型)。并且,基于缩放系数提供了N/S/M/L/X不同尺度的模型,以满足不同部署平台和应用场景的需求。
  2. Backbone:同样借鉴了CSP模块思想,不过将Yolov5中的C3模块替换成了C2f模块,实现了进一步轻量化,同时沿用Yolov5中的SPPF模块,并对不同尺度的模型进行精心微调,不再是无脑式一套参数用于所有模型,大幅提升了模型性能。
  3. Neck:继续使用PAN的思想,但是通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8移除了1*1降采样层。
  4. Head部分相比YOLOv5改动较大,Yolov8换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离,同时也从Anchor-Based换成了Anchor-Free。
  5. Loss计算:使用VFL Loss作为分类损失(实际训练中使用BCE Loss);使用DFL Loss+CIOU Loss作为回归损失。
    标签分配:Yolov8抛弃了以往的IoU分配或者单边比例的分配方式,而是采用Task-Aligned Assigner正负样本分配策略。

其主要网络结构如下:


深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数(2)https://developer.aliyun.com/article/1536938

相关文章
|
5天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
38 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
65 33
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
47 10
|
机器学习/深度学习 关系型数据库 Python
纯Python实现鸢尾属植物数据集神经网络模型
本文以Python代码完成整个鸾尾花图像分类任务,没有调用任何的数据包,适合新手阅读理解,并动手实践体验下机器学习方法的大致流程。
21206 3
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
122 80
|
3月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
166 59
|
2月前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
45 14
|
2月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
93 2

热门文章

最新文章