【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN

同上一篇文章中的搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。本文,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。

导入所需的包或模块。

import collections
import os
import random
import tarfile
import torch
from torch import nn
import torchtext.vocab as Vocab
import torch.utils.data as Data
import sys
import d2lzh_pytorch as d2l
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DATA_ROOT = "./Datasets"

1 文本情感分类数据

我们使用斯坦福的IMDb数据集(Stanford’s Large Movie Review Dataset)作为文本情感分类的数据集 。这个数据集分为训练和测试用的两个数据集,分别包含25,000条从IMDb下载的关于电影的评论。在每个数据集中,标签为“正面”和“负面”的评论数量相等。

1.1 读取数据

首先下载数据集到DATA_ROOT路径下,然后解压。

关注GZH:阿旭算法与机器学习,回复:“文本情感分类”即可获取本文数据集与项目文档,欢迎共同学习交流

fname = os.path.join(DATA_ROOT, "aclImdb_v1.tar.gz")
if not os.path.exists(os.path.join(DATA_ROOT, "aclImdb")):
    print("从压缩包解压...")
    with tarfile.open(fname, 'r') as f:
        f.extractall(DATA_ROOT)

接下来,读取训练数据集和测试数据集。每个样本是一条评论及其对应的标签:1表示“正面”,0表示“负面”。

from tqdm import tqdm
def read_imdb(folder='train', data_root="./Datasets/aclImdb"): 
    data = []
    for label in ['pos', 'neg']:
        folder_name = os.path.join(data_root, folder, label)
        for file in tqdm(os.listdir(folder_name)):
            with open(os.path.join(folder_name, file), 'rb') as f:
                review = f.read().decode('utf-8').replace('\n', '').lower()
                data.append([review, 1 if label == 'pos' else 0])
    random.shuffle(data)
    return data
train_data, test_data = read_imdb('train'), read_imdb('test')

1.2 预处理数据

我们需要对每条评论做分词,从而得到分好词的评论。这里定义的get_tokenized_imdb函数使用最简单的方法:基于空格进行分词。

def get_tokenized_imdb(data):
    """
    data: list of [string, label]
    """
    def tokenizer(text):
        return [tok.lower() for tok in text.split(' ')]
    return [tokenizer(review) for review, _ in data]

现在,我们可以根据分好词的训练数据集来创建词典了。我们在这里过滤掉了出现次数少于5的词。

def get_vocab_imdb(data):
    tokenized_data = get_tokenized_imdb(data)
    counter = collections.Counter([tk for st in tokenized_data for tk in st])
    return Vocab.Vocab(counter, min_freq=5)
vocab = get_vocab_imdb(train_data)
'# words in vocab:', len(vocab)

输出:

('# words in vocab:', 46151)

因为每条评论长度不一致所以不能直接组合成小批量,我们定义preprocess_imdb函数对每条评论进行分词,并通过词典转换成词索引,然后通过截断或者补0来将每条评论长度固定成500。

def preprocess_imdb(data, vocab):
    max_l = 500  # 将每条评论通过截断或者补0,使得长度变成500
    def pad(x):
        return x[:max_l] if len(x) > max_l else x + [0] * (max_l - len(x))
    tokenized_data = get_tokenized_imdb(data)
    features = torch.tensor([pad([vocab.stoi[word] for word in words]) for words in tokenized_data])
    labels = torch.tensor([score for _, score in data])
    return features, labels

1.3 创建数据迭代器

现在,我们创建数据迭代器。每次迭代将返回一个小批量的数据。

batch_size = 64
train_set = Data.TensorDataset(*preprocess_imdb(train_data, vocab))
test_set = Data.TensorDataset(*preprocess_imdb(test_data, vocab))
train_iter = Data.DataLoader(train_set, batch_size, shuffle=True)
test_iter = Data.DataLoader(test_set, batch_size)

打印第一个小批量数据的形状以及训练集中小批量的个数。

for X, y in train_iter:
    print('X', X.shape, 'y', y.shape)
    break
'#batches:', len(train_iter)

输出:

X torch.Size([64, 500]) y torch.Size([64])
('#batches:', 391)

2 使用循环神经网络的模型

在这个模型中,每个词先通过嵌入层得到特征向量。然后,我们使用双向循环神经网络对特征序列进一步编码得到序列信息。最后,我们将编码的序列信息通过全连接层变换为输出。具体来说,我们可以将双向长短期记忆在最初时间步和最终时间步的隐藏状态连结,作为特征序列的表征传递给输出层分类。在下面实现的BiRNN类中,Embedding实例即嵌入层,LSTM实例即为序列编码的隐藏层,Linear实例即生成分类结果的输出层。

class BiRNN(nn.Module):
    def __init__(self, vocab, embed_size, num_hiddens, num_layers):
        super(BiRNN, self).__init__()
        self.embedding = nn.Embedding(len(vocab), embed_size)
        # bidirectional设为True即得到双向循环神经网络
        self.encoder = nn.LSTM(input_size=embed_size, 
                                hidden_size=num_hiddens, 
                                num_layers=num_layers,
                                bidirectional=True)
        # 初始时间步和最终时间步的隐藏状态作为全连接层输入
        self.decoder = nn.Linear(4*num_hiddens, 2)
    def forward(self, inputs):
        # inputs的形状是(批量大小, 词数),因为LSTM需要将序列长度(seq_len)作为第一维,所以将输入转置后
        # 再提取词特征,输出形状为(词数, 批量大小, 词向量维度)
        embeddings = self.embedding(inputs.permute(1, 0))
        # rnn.LSTM只传入输入embeddings,因此只返回最后一层的隐藏层在各时间步的隐藏状态。
        # outputs形状是(词数, 批量大小, 2 * 隐藏单元个数)
        outputs, _ = self.encoder(embeddings) # output, (h, c)
        # 连结初始时间步和最终时间步的隐藏状态作为全连接层输入。它的形状为
        # (批量大小, 4 * 隐藏单元个数)。
        encoding = torch.cat((outputs[0], outputs[-1]), -1)
        outs = self.decoder(encoding)
        return outs

创建一个含两个隐藏层的双向循环神经网络。

embed_size, num_hiddens, num_layers = 100, 100, 2
net = BiRNN(vocab, embed_size, num_hiddens, num_layers)

2.1 加载预训练的词向量

由于情感分类的训练数据集并不是很大,为应对过拟合,我们将直接使用在更大规模语料上预训练的词向量作为每个词的特征向量。这里,我们为词典vocab中的每个词加载100维的GloVe词向量。

glove_vocab = Vocab.GloVe(name='6B', dim=100, cache=os.path.join(DATA_ROOT, "glove"))

然后,我们将用这些词向量作为评论中每个词的特征向量。注意,预训练词向量的维度需要与创建的模型中的嵌入层输出大小embed_size一致。此外,在训练中我们不再更新这些词向量。

def load_pretrained_embedding(words, pretrained_vocab):
    """从预训练好的vocab中提取出words对应的词向量"""
    embed = torch.zeros(len(words), pretrained_vocab.vectors[0].shape[0]) # 初始化为0
    oov_count = 0 # out of vocabulary
    for i, word in enumerate(words):
        try:
            idx = pretrained_vocab.stoi[word]
            embed[i, :] = pretrained_vocab.vectors[idx]
        except KeyError:
            oov_count += 1
    if oov_count > 0:
        print("There are %d oov words." % oov_count)
    return embed
net.embedding.weight.data.copy_(
    load_pretrained_embedding(vocab.itos, glove_vocab))
net.embedding.weight.requires_grad = False # 直接加载预训练好的, 所以不需要更新它

输出:

There are 21202 oov words.

2.2 训练并评价模型

这时候就可以开始训练模型了。

lr, num_epochs = 0.01, 5
# 要过滤掉不计算梯度的embedding参数
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
loss = nn.CrossEntropyLoss()
d2l.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)

输出:

training on  cuda
epoch 1, loss 0.5759, train acc 0.666, test acc 0.832, time 250.8 sec
epoch 2, loss 0.1785, train acc 0.842, test acc 0.852, time 253.3 sec
epoch 3, loss 0.1042, train acc 0.866, test acc 0.856, time 253.7 sec
epoch 4, loss 0.0682, train acc 0.888, test acc 0.868, time 254.2 sec
epoch 5, loss 0.0483, train acc 0.901, test acc 0.862, time 251.4 sec

2.3 使用模型进行预测

最后,定义预测函数。

def predict_sentiment(net, vocab, sentence):
    """sentence是词语的列表"""
    device = list(net.parameters())[0].device
    sentence = torch.tensor([vocab.stoi[word] for word in sentence], device=device)
    label = torch.argmax(net(sentence.view((1, -1))), dim=1)
    return 'positive' if label.item() == 1 else 'negative'

下面使用训练好的模型对两个简单句子的情感进行分类。

predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'great']) # positive
predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'bad']) # negative

总结

  • 文本分类把一段不定长的文本序列变换为文本的类别。它属于词嵌入的下游应用。
  • 可以应用预训练的词向量和循环神经网络对文本的情感进行分类。
相关文章
|
25天前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
50 1
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
161 59
|
9天前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
1月前
|
数据采集 搜索推荐 算法
基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析
本文通过Python爬虫技术采集B站视频评论数据,利用LDA主题分析、聚类分析和语义网络分析等方法,对评论进行深入的文本分析,挖掘用户评论的主题、情感倾向和语义结构,旨在为商业决策提供支持,优化内容创作和用户满意度。
111 2
基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】python之人工智能应用篇——文本生成技术
文本生成是指使用自然语言处理技术,基于给定的上下文或主题自动生成人类可读的文本。这种技术可以应用于各种领域,如自动写作、聊天机器人、新闻生成、广告文案创作等。
43 8
|
1月前
|
机器学习/深度学习 存储 人工智能
自然语言处理 Paddle NLP - 检索式文本问答-理论
自然语言处理 Paddle NLP - 检索式文本问答-理论
18 1
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
21天前
|
自然语言处理 C# 开发者
Uno Platform多语言开发秘籍大公开:轻松驾驭全球用户,一键切换语言,让你的应用成为跨文化交流的桥梁!
【8月更文挑战第31天】Uno Platform 是一个强大的开源框架,允许使用 C# 和 XAML 构建跨平台的原生移动、Web 和桌面应用程序。本文详细介绍如何通过 Uno Platform 创建多语言应用,包括准备工作、设置多语言资源、XAML 中引用资源、C# 中加载资源以及处理语言更改。通过简单的步骤和示例代码,帮助开发者轻松实现应用的国际化。
28 0
|
23天前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
33 0
|
30天前
|
机器学习/深度学习 自然语言处理 算法
nlp文本提取关键词
8月更文挑战第21天
16 0