离线数仓(九)【DWS 层开发】(4)

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 离线数仓(九)【DWS 层开发】

离线数仓(九)【DWS 层开发】(3)https://developer.aliyun.com/article/1532437

1.1.7、交易域用户粒度退单最近1日汇总表

1)建表语句
DROP TABLE IF EXISTS dws_trade_user_order_refund_1d;
CREATE EXTERNAL TABLE dws_trade_user_order_refund_1d
(
    `user_id`                STRING COMMENT '用户id',
    `order_refund_count_1d`  BIGINT COMMENT '最近1日退单次数',
    `order_refund_num_1d`    BIGINT COMMENT '最近1日退单商品件数',
    `order_refund_amount_1d` DECIMAL(16, 2) COMMENT '最近1日退单金额'
) COMMENT '交易域用户粒度退单最近1日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_order_refund_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');
2)数据装载(首日/每日)
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_trade_user_order_refund_1d partition(dt)
select
    user_id,
    count(*) order_refund_count,
    sum(refund_num) order_refund_num,
    sum(refund_amount) order_refund_amount,
    dt
from dwd_trade_order_refund_inc
group by user_id,dt;

 

insert overwrite table dws_trade_user_order_refund_1d partition(dt='2020-06-15')
select
    user_id,
    count(*),
    sum(refund_num),
    sum(refund_amount)
from dwd_trade_order_refund_inc
where dt='2020-06-15'
group by user_id;

1.1.8、流量域会话粒度页面浏览最近1日汇总表

1)建表语句

同样这里除了会话 id 还做了一些维度退化:

DROP TABLE IF EXISTS dws_traffic_session_page_view_1d;
CREATE EXTERNAL TABLE dws_traffic_session_page_view_1d
(
    `session_id`     STRING COMMENT '会话id',
    `mid_id`         string comment '设备id',
    `brand`          string comment '手机品牌',
    `model`          string comment '手机型号',
    `operate_system` string comment '操作系统',
    `version_code`   string comment 'app版本号',
    `channel`        string comment '渠道',
    `during_time_1d` BIGINT COMMENT '最近1日访问时长',
    `page_count_1d`  BIGINT COMMENT '最近1日访问页面数'
) COMMENT '流量域会话粒度页面浏览最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_traffic_session_page_view_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');
2)数据装载

没有首日每日的区分,因为流量域的数据都来自日志,而日志没有历史数据。

insert overwrite table dws_traffic_session_page_view_1d partition(dt='2020-06-14')
select
    session_id,
    mid_id,
    brand,
    model,
    operate_system,
    version_code,
    channel,
    sum(during_time),
    count(*)
from dwd_traffic_page_view_inc
where dt='2020-06-14'
group by session_id,mid_id,brand,model,operate_system,version_code,channel;

1.1.9、流量域访客页面粒度页面浏览最近1日汇总表

1)建表语句
DROP TABLE IF EXISTS dws_traffic_page_visitor_page_view_1d;
CREATE EXTERNAL TABLE dws_traffic_page_visitor_page_view_1d
(
    `mid_id`         STRING COMMENT '访客id',
    `brand`          string comment '手机品牌',
    `model`          string comment '手机型号',
    `operate_system` string comment '操作系统',
    `page_id`        STRING COMMENT '页面id',
    `during_time_1d` BIGINT COMMENT '最近1日浏览时长',
    `view_count_1d`  BIGINT COMMENT '最近1日访问次数'
) COMMENT '流量域访客页面粒度页面浏览最近1日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_traffic_page_visitor_page_view_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');
2)数据装载
insert overwrite table dws_traffic_page_visitor_page_view_1d partition(dt='2020-06-14')
select
    mid_id,
    brand,
    model,
    operate_system,
    page_id,
    sum(during_time),
    count(*)
from dwd_traffic_page_view_inc
where dt='2020-06-14'
group by mid_id,brand,model,operate_system,page_id;

2.1、 最近n日汇总表

2.1.1、交易域用户商品粒度订单最近n日汇总表

1)建表语句
DROP TABLE IF EXISTS dws_trade_user_sku_order_nd;
CREATE EXTERNAL TABLE dws_trade_user_sku_order_nd
(
    `user_id`                    STRING COMMENT '用户id',
    `sku_id`                     STRING COMMENT 'sku_id',
    `sku_name`                   STRING COMMENT 'sku名称',
    `category1_id`               STRING COMMENT '一级分类id',
    `category1_name`             STRING COMMENT '一级分类名称',
    `category2_id`               STRING COMMENT '一级分类id',
    `category2_name`             STRING COMMENT '一级分类名称',
    `category3_id`               STRING COMMENT '一级分类id',
    `category3_name`             STRING COMMENT '一级分类名称',
    `tm_id`                      STRING COMMENT '品牌id',
    `tm_name`                    STRING COMMENT '品牌名称',
    `order_count_7d`             STRING COMMENT '最近7日下单次数',
    `order_num_7d`               BIGINT COMMENT '最近7日下单件数',
    `order_original_amount_7d`   DECIMAL(16, 2) COMMENT '最近7日下单原始金额',
    `activity_reduce_amount_7d`  DECIMAL(16, 2) COMMENT '最近7日活动优惠金额',
    `coupon_reduce_amount_7d`    DECIMAL(16, 2) COMMENT '最近7日优惠券优惠金额',
    `order_total_amount_7d`      DECIMAL(16, 2) COMMENT '最近7日下单最终金额',
    `order_count_30d`            BIGINT COMMENT '最近30日下单次数',
    `order_num_30d`              BIGINT COMMENT '最近30日下单件数',
    `order_original_amount_30d`  DECIMAL(16, 2) COMMENT '最近30日下单原始金额',
    `activity_reduce_amount_30d` DECIMAL(16, 2) COMMENT '最近30日活动优惠金额',
    `coupon_reduce_amount_30d`   DECIMAL(16, 2) COMMENT '最近30日优惠券优惠金额',
    `order_total_amount_30d`     DECIMAL(16, 2) COMMENT '最近30日下单最终金额'
) COMMENT '交易域用户商品粒度订单最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_sku_order_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');
2)数据装载

       这里并不需要区分首日和每日。

insert overwrite table dws_trade_user_sku_order_nd partition(dt='2020-06-14')
select
    user_id,
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    sum(if(dt>=date_add('2020-06-14',-6),order_count_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_num_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_original_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),activity_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),coupon_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_total_amount_1d,0)),
    sum(order_count_1d),
    sum(order_num_1d),
    sum(order_original_amount_1d),
    sum(activity_reduce_amount_1d),
    sum(coupon_reduce_amount_1d),
    sum(order_total_amount_1d)
from dws_trade_user_sku_order_1d
where dt>=date_add('2020-06-14',-29)
group by  user_id,sku_id,sku_name,category1_id,category1_name,category2_id,category2_name,category3_id,category3_name,tm_id,tm_name;

       这里我们 group by 的字段有很多,但其实并不影响。因为 group by 影响的是粒度,但是这里 group by  的字段都是商品的一些维度,所以不管 group by user_id,sku_id 还是 group by user_id,sku_id 和其它商品维度,最终的粒度依然是用户商品粒度。

2.1.2、交易域用户商品粒度退单最近n日汇总表

1)建表语句

每行代表:每个人每个最近7/30天某个商品退单的次数、件数。

列由维度和统计值组成。

DROP TABLE IF EXISTS dws_trade_user_sku_order_refund_nd;
CREATE EXTERNAL TABLE dws_trade_user_sku_order_refund_nd
(
    `user_id`                     STRING COMMENT '用户id',
    `sku_id`                      STRING COMMENT 'sku_id',
    `sku_name`                    STRING COMMENT 'sku名称',
    `category1_id`                STRING COMMENT '一级分类id',
    `category1_name`              STRING COMMENT '一级分类名称',
    `category2_id`                STRING COMMENT '一级分类id',
    `category2_name`              STRING COMMENT '一级分类名称',
    `category3_id`                STRING COMMENT '一级分类id',
    `category3_name`              STRING COMMENT '一级分类名称',
    `tm_id`                       STRING COMMENT '品牌id',
    `tm_name`                     STRING COMMENT '品牌名称',
    `order_refund_count_7d`       BIGINT COMMENT '最近7日退单次数',
    `order_refund_num_7d`         BIGINT COMMENT '最近7日退单件数',
    `order_refund_amount_7d`      DECIMAL(16, 2) COMMENT '最近7日退单金额',
    `order_refund_count_30d`      BIGINT COMMENT '最近30日退单次数',
    `order_refund_num_30d`        BIGINT COMMENT '最近30日退单件数',
    `order_refund_amount_30d`     DECIMAL(16, 2) COMMENT '最近30日退单金额'
) COMMENT '交易域用户商品粒度退单最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_sku_order_refund_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');
2)数据装载

找到与之相对的 1d 表,拿 30 哥分区过滤一下,按照用户和商品(所有商品属性,因为这些商品属性只对应一个商品,不用担心 group by 会破坏粒度)分组。

insert overwrite table dws_trade_user_sku_order_refund_nd partition(dt='2020-06-14')
select
    user_id,
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    sum(if(dt>=date_add('2020-06-14',-6),order_refund_count_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_refund_num_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_refund_amount_1d,0)),
    sum(order_refund_count_1d),
    sum(order_refund_num_1d),
    sum(order_refund_amount_1d)
from dws_trade_user_sku_order_refund_1d
where dt>=date_add('2020-06-14',-29)
and dt<='2020-06-14'
group by user_id,sku_id,sku_name,category1_id,category1_name,category2_id,category2_name,category3_id,category3_name,tm_id,tm_name;

2.1.3、交易域用户粒度订单最近n日汇总表

1)建表语句

行:每个用户最近7/30天的下单信息(次数、件数和总额等)

DROP TABLE IF EXISTS dws_trade_user_order_nd;
CREATE EXTERNAL TABLE dws_trade_user_order_nd
(
    `user_id`                    STRING COMMENT '用户id',
    `order_count_7d`             BIGINT COMMENT '最近7日下单次数',
    `order_num_7d`               BIGINT COMMENT '最近7日下单商品件数',
    `order_original_amount_7d`   DECIMAL(16, 2) COMMENT '最近7日下单原始金额',
    `activity_reduce_amount_7d`  DECIMAL(16, 2) COMMENT '最近7日下单活动优惠金额',
    `coupon_reduce_amount_7d`    DECIMAL(16, 2) COMMENT '最近7日下单优惠券优惠金额',
    `order_total_amount_7d`      DECIMAL(16, 2) COMMENT '最近7日下单最终金额',
    `order_count_30d`            BIGINT COMMENT '最近30日下单次数',
    `order_num_30d`              BIGINT COMMENT '最近30日下单商品件数',
    `order_original_amount_30d`  DECIMAL(16, 2) COMMENT '最近30日下单原始金额',
    `activity_reduce_amount_30d` DECIMAL(16, 2) COMMENT '最近30日下单活动优惠金额',
    `coupon_reduce_amount_30d`   DECIMAL(16, 2) COMMENT '最近30日下单优惠券优惠金额',
    `order_total_amount_30d`     DECIMAL(16, 2) COMMENT '最近30日下单最终金额'
) COMMENT '交易域用户粒度订单最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_order_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');
2)数据装载

上面的 1d 表我们对 order_id 进行了去重,因为一个订单多个商品,会在 dwd_order_detail 重罚产生多条记录。但是这里的 nd 表并不需要去重,因为一个订单不可能多次下单。

insert overwrite table dws_trade_user_order_nd partition(dt='2020-06-14')
select
    user_id,
    sum(if(dt>=date_add('2020-06-14',-6),order_count_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_num_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_original_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),activity_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),coupon_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_total_amount_1d,0)),
    sum(order_count_1d),
    sum(order_num_1d),
    sum(order_original_amount_1d),
    sum(activity_reduce_amount_1d),
    sum(coupon_reduce_amount_1d),
    sum(order_total_amount_1d)
from dws_trade_user_order_1d
where dt>=date_add('2020-06-14',-29)
and dt<='2020-06-14'
group by user_id;

离线数仓(九)【DWS 层开发】(5)https://developer.aliyun.com/article/1532440

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
7月前
|
存储 数据采集 JavaScript
深入理解数仓开发(一)数据技术篇之日志采集
深入理解数仓开发(一)数据技术篇之日志采集
|
7月前
|
消息中间件 关系型数据库 Kafka
深入理解数仓开发(二)数据技术篇之数据同步
深入理解数仓开发(二)数据技术篇之数据同步
|
5月前
|
消息中间件 监控 关系型数据库
Serverless 应用的监控与调试问题之实时离线数仓一体化常用的解决方案有什么问题
Serverless 应用的监控与调试问题之实时离线数仓一体化常用的解决方案有什么问题
|
6月前
|
存储 DataWorks Java
DataWorks产品使用合集之开发离线数仓时,需要多个工作空间的情况有哪些
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
7月前
|
消息中间件 存储 Kafka
Flink 实时数仓(二)【ODS 层开发】
Flink 实时数仓(二)【ODS 层开发】
|
7月前
|
存储 消息中间件 NoSQL
Flink 实时数仓(一)【实时数仓&离线数仓对比】(2)
Flink 实时数仓(一)【实时数仓&离线数仓对比】
|
7月前
|
存储 消息中间件 Kafka
Flink 实时数仓(一)【实时数仓&离线数仓对比】(1)
Flink 实时数仓(一)【实时数仓&离线数仓对比】
|
3月前
|
人工智能 自然语言处理 关系型数据库
阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。
|
3月前
|
人工智能 分布式计算 数据管理
阿里云位居 IDC MarketScape 中国实时湖仓评估领导者类别
国际数据公司( IDC )首次发布了《IDC MarketScape: 中国实时湖仓市场 2024 年厂商评估》,阿里云在首次报告发布即位居领导者类别。
|
3月前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
296 0