上云业务的k8s容器排障与思考

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 本文主要讲述了在完成业务上云后,面临因业务请求量激增导致的系统复杂故障和挑战。作者通过排查分析,发现了一个长时间处于“进行中”状态的异常任务,客户端(APP2)进程卡死,而服务端(APP3)进程正常结束。进一步分析发现,问题出在kube-proxy代理的会话超时机制,由于请求处理延迟,kube-proxy清理了会话记录,导致服务端回包异常,客户端无法识别,从而形成进程假死。最后,作者强调了在成本控制背景下,通过分析流量增长原因、优化技术架构和调整运营策略来改善系统性能和稳定性的必要性。

1 前言

此前我们部门已经完成了业务上云的目标,而随着业务请求量的激增,上云应用系统也面临着一些复杂的故障和挑战。

下文我就结合最近的容器排障工作,跟大家一起探讨如何优化系统的性能、扩展性和容错能力,为读者提供参考和借鉴,以确保系统的高效运行和可靠交付。

2 业务异常与排障思路

用户反馈出现了一个异常任务,它长时间出于“进行中”的状态;用户上传的源物料大小是568MB左右,预期能够半小时出结果,实际过了6个小时都没有结束任务。

image.png

2.1 排障思路

image.png

最终我们通过上面的排障思路和定位行动,将根本原因定位出来了:排查发现是容器集群资源吃紧,结合云原生组件kubeproxy反向代理机制,两者结合引发所导致。


下面具体列出分析思路和大致流程,一起讨论下。

3 排障定位

3.1 业务流程梳理

3.1.1 任务流程图

image.png    

  1. 用户上传源数据包:用户可以上传自己的任务数据包,并可以配置任务执行的所需资源(比如:执行算法、执行线程数等)
  2. APP1→ APP2:上传任务数据
  3. 任务进入APP2内部队列:优先对进入的任务进行数据分片处理
  4. APP2→ APP3:APP2分片处理完成之后,按照可配置请求线程数T,进行按每批次T个请求,将分片内容传输给APP3
  5. APP3:从磁盘IO读取开源知识库数据
  6. APP3:对接收到的分片内容,对数据进行算法分析
  7. APP3:所有请求携带的分片数据都分析完毕,并且全部正确响应给APP2,宣告:一个任务“完成”

3.1.2 分析

既然目前是任务一直执行,说明问题是出在了(3)~(7)步骤上了,那么聚焦于APP2和APP3。

基于他们的请求响应关系,下文将APP2定位成客户端,将APP3定位成服务端。

3.2 容器进程分析

正常的预期现象是:两边容器都有业务进程,并且两边进程频繁进行HTTP通信;当任务执行结束之后,两边进程都将退出被系统销毁。

那么我们首先需要分析两侧容器进程。

3.2.1 查看容器子进程

通过ps -ef,分别在客户端APP2和服务端APP3,打印进程状态。

客户端

image.png

客户端APP2的任务进程:有一个进程存活,说明客户端进程卡住了。

服务端

服务端APP3的任务进程:没有执行中的任务进程了。

3.2.2 分析

定位是客户端APP2的进程卡死,而服务端APP3的进程正常结束了。

3.3 进程卡死原因定位

分析进程卡死的原因,首先是想到日志,然后是网络。

3.3.1 查看容器日志

在云容器的日志看,发现并没有打印相关的ERROR级别日志,说明业务是整体成功的状态,所以我们更加怀疑是环境问题(网络/IO等资源)导致。

3.3.2 容器进程的网络端口状态

通过netstat -ntp| grep PID,分别在APP2和APP3进程关联的网络端口状态。

客户端

image.png

服务端

由于不存在工作进程,所以也查不出关联的网络端口了。

3.3.3 分析

通过网络排查,发现了客户端APP2的进程,存在4个TCP端口一直在监听状态,并没有正常关闭。


3.4 请求链路分析

分别从客户端和服务端角度出发,去定位TCP连接异常监听。

3.4.1 思路

  • 从客户端APP2角度看
  • 进程假死原因是:4个TCP连接建立之后,TCP端口一直在等待数据响应(即客户端发起HTTP请求一直阻塞)
  • 在任务进行中,过程可能发起>8000次请求,最后残留了4个请求异常的TCP连接
  • 3.2.1步骤中发现:客户端进程是通过 service-name 来请求服务端容器
  • 从服务端APP3角度看
  • 虽然计算工作量会很大,但服务端进程最终正常销毁了


3.4.2 请求链路

由于容器集群是已经部署上云,并且在K8S部署架构下运行,和运维侧的同学一起梳理出以下的请求链路:

image.png

这里与HTTP普通请求响应的区别:由于service的“从中作梗”,kube-proxy其实是一个代理层负责实现service。

3.4.2.1 kube-proxy

通过kube-proxy的ipvs机制,实现了从 service-ip 到 容器ip的映射,完成一个网络转发代理,最终实现容器之间的通信。

image.png

3.4.2.2 实际转发请求

请求链路最终经过了以下3个步骤:

  • 容器APP2发起的请求时,首先通过service-name找到APP3-service(service是对外暴露pod的一层代理)
  • 随后请求经过kube-proxy处理,以实现虚拟 IP 转换(即service-ip到pod实例ip的转换)
  • 云上的kube-proxy采用了ipvs代理模式
  • 最终实现将流量导向到某一个后端 Pod(即APP3-pod)。
  • 流量导向完成后,请求最终会进入pod的一个实例(即APP3-容器)

3.4.3 分析

上面在3.3.3步骤 也分析到了,客户端的连接(客户端APP2→APP3-service)是一直建立的,而服务端的连接(APP3-service→APP3-容器)是关闭了的。

那么我们判断问题是在了kube-proxy代理这个环节上。

3.4.4 猜想验证

因为恢复业务使用一直是当务之急,所以基于请求链路的理解,我们大胆测试了一下:改为通过pod-ip/port直连通信的方式,客户端进程能否正常结束呢?

随后验证:该方案是可行的,此时的客户端和服务端进程都正常结束了。

3.4.4.1 临时解决方案

通过pod-ip/port直连的方式,同时技术运营同学也辅助了pod重启之后的pod-ip动态刷新的工作,确保临时方案的可用性。

至此,我们优先恢复了业务的正常使用。

3.4.5 根本问题

但kube-proxy的流量代理问题,仍旧没定位清晰;未来容器服务,如果要继续做高可用部署,依旧是离不开这个组件的,所以继续盘它。

通过3.4.3步骤 分析,最终定位到问题出在了kube-proxy代理这个环节上,所以决定在客户端和服务端两侧进行抓包。

3.5 抓包分析网络

通过tcpdump,我们分别在客户端和服务端里,实现了流量抓包(虽然日志非常大,幸好容器分配到的磁盘空间足够,事后也有清理),随后是下载出来用wireshark分析网络情况。

期间过程有点繁琐,因为要顺序性的启动抓包进程、客户端服务端进程复现、以及文件权限申请等细节,这里不对抓包过程展开。

3.5.1 网络分析

最终是复现了问题,并对残留的几个TCP连接进行了抓包分析,这里针对其中一个异常的TCP连接(客户端的进程残留一个TCP连接port=40422)分析。

3.5.1.1 连接建立点

客户端

image.png

客户端目标是service-ip,三次握手完成,连接建立是在12:03:36。

服务端

image.png

经过kube-proxy代理到具体的pod实例,服务端跟客户端,三次握手完成,连接建立是在12:03:09。

3.5.1.2 故障异常点

客户端

image.png

客户端最后一次跟service-ip连接通信,在12:04:51。

服务端

image.png


  1. 中间出现了30分钟的间隔
  2. 服务端最后一次回包是在12:35:20,是回给客户端的
  3. 随后,由于客户端检测到连接中存在问题,给服务端发了RST报文。


3.5.2 分析

通过网络抓包分析得到:

  1. 客户端是和service建立连接的,而非直接和服务端
  2. 30分钟之后,服务端回了一个包给客户端
  3. 服务端是可以直接回包给客户端的,但客户端显然不认识服务端的数据包,并发起了断开连接申请(RST包),随后服务端TCP正常关闭了。
  4. 最终出现了“案发现场”:客户端和service的连接残留了,而服务端TCP正常关闭。

3.6 kube-proxy代理配置自检

目前摸到的线索是:服务端回了一个包给客户端,并造成了“案发现场”。于是我们找了云同学协助查看问题,最终判断是kube-proxy的代理会话超时机制作用导致。

3.6.1 kube-proxy会话保活机制

kube-proxy存在会话保活机制:会记录客户端与服务端的连接,有效时间是15分钟

当ipvs会话保持超时后,连接记录就没了。

  • 连接记录什么作用?
  • 能够让客户端发包时,发给service-ip的数据包,定位到服务端ip,然后转发给服务端
  • 能够让服务端回包时,发给客户端的数据包,以service-ip的名义,转发给客户端

3.6.2 分析

梳理请求链路,我们得到以下的“客户端-Service-服务端”三方通信流程图:

image.png


针对“服务端回了一个包给客户端,并造成了“案发现场”,从上面关注两个时间点:

  1. 在第15分钟时候,kube-proxy清理会话
  2. 在第30分钟时候,服务端回了一个包给客户端:
  1. 但服务端回包给客户端时,不再是通过service-ip的“头衔加持”(因为会话记录清理了,会导致服务端的回包无法转换为原来的service ip),而是以服务器的名义,直接丢数据包给客户端了;
  2. 客户端此时不认识服务端的(在k8s的service机制下,客户端是对服务端信息无感知的,因为一直和客户端接头的是service);所以,回了一个RST数据包给服务端;
  3. 服务端接收到RST数据包之后,它是认识客户端的,因此主动关闭了自己一侧的TCP端口;【这解释了:服务端进程正常关闭TCP端口】
  4. 而客户端则一直在苦等,原来和自己接头的service-ip的回包,但它永远等不到了【这解析了:客户端一直没能正常关闭TCP端口】


3.6.3 结论

至此,我们已经找到了故障的根本原因:

  • 因为客户端和服务端连接创建之后,该请求一直被搁置着,没有得到及时保活,导致kube-proxy清理了会话记录;
  • 当服务端处理超时时,因为会话记录被清理,回包出现异常,没有经过service回包给了客户端;
  • 客户端一直等待的service回包用于等不到,所以就一直监听着(对业务来说,就是进程假死)

 

调整kube-proxy的会话超时时间是不实际的,因为基础组件改动是一个全局的影响;

所以自然引出最后一个问题:为什么服务端会来不及处理请求,以至于不能及时保活。


3.7 容器资源监控

对于为什么服务端会来不及处理请求,以至于不能及时保活;我们想到的是两个原因:

  • 服务端计算能力有限,导致已有请求处理慢,新增请求一直阻塞(前者是跟容器资源配置息息相关,该项是可以优化的)
  • 请求的超时时间设置的太长,给了服务端处理超时的机会(这是由产品能力决定的,为了确保服务端计算充分完整并响应,该项调整空间不大)

基于对服务端计算能力的评估,只能是跟容器资源限制有关系,于是查看了服务端APP3的CPU/内存/网络/IO的相关监控。

3.7.1 CPU监控

只关注APP3,因为计算量集中在这个服务。

监控显示:CPU整体负载很低,在任务进行中时,CPU使用量才略微升高,而后下去了(约等于不工作,说明APP2的确完成了计算量的工作了)。

image.png

3.7.2 内存监控

监控显示:APP3在数据分析过程里,内存一直飙高,但经过一段时间后,量就降下去了。

image.png

3.7.3 IO监控

监控显示:APP3在数据分析过程里,IO带宽一直打满,达到了280MBps,但经过一段时间后,监控就降下去了。

image.png

因为我们用的是云存储规格是SSD,也算是到了性能瓶颈了。

image.png

3.7.4 分析

从资源监控看资源吃紧是客观存在的:

  1. 尤其是IO资源一直打满,内存也非常吃紧,暴露了容器的计算瓶颈在于资源;
  2. 而CPU资源一直上不去,也是受限于资源利用率已经非常高了;

4 运营策略调整和思考

结合公司的降本增效大背景,通过无限制的投入资源去优化体验,片面去追求更大的内存和更快的磁盘IO是不现实的。

这次独特的Bug排查,也是由于业务流量徒增而导致,所以我们决定利用好已有的条件去克服困难:

  1. 分析流量增长原因首先我们找到了用户团队并了解清楚工具使用频率和,承诺通过两种方法协助业务团队:
  1. 对于周期性业务调用压力:调整为分散式任务,以时间换空间,避免短期内的资源高峰,降低系统的负载压力。
  2. 确实无法分散式,我们会通过合理配置并发任务数和并发线程数,可以提高任务的执行效率,减少资源浪费,协助业务快速完成项目任务;
  1. 优化技术架构在资源有限的情况下,通过优化技术架构提高系统的性能和稳定性。
  1. 后续对容器集群的高可用架构进行优化
  2. 升级容器算法,提速服务端计算能力
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
2月前
|
人工智能 弹性计算 运维
ACK Edge与IDC:高效容器网络通信新突破
本文介绍如何基于ACK Edge以及高效的容器网络插件管理IDC进行容器化。
|
17天前
|
存储 运维 Kubernetes
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
飞轮科技推出了 Doris 的 Kubernetes Operator 开源项目(简称:Doris Operator),并捐赠给 Apache 基金会。该工具集成了原生 Kubernetes 资源的复杂管理能力,并融合了 Doris 组件间的分布式协同、用户集群形态的按需定制等经验,为用户提供了一个更简洁、高效、易用的容器化部署方案。
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
|
2月前
|
监控 NoSQL 时序数据库
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
275 78
|
12天前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
|
16天前
|
存储 监控 对象存储
ACK容器监控存储全面更新:让您的应用运行更稳定、更透明
介绍升级之后的ACK容器监控体系,包括各大盘界面展示和概要介绍。
|
2月前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
154 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
23天前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
98 11
|
2月前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
本文整理自2024云栖大会冯诗淳(花名:行疾)的演讲,介绍了阿里云容器服务团队在生产级可观测体系建设方面的实践。冯诗淳详细阐述了容器化架构带来的挑战及解决方案,强调了可观测性对于构建稳健运维体系的重要性。文中提到,阿里云作为亚洲唯一蝉联全球领导者的容器管理平台,其可观测能力在多项关键评测中表现优异,支持AI、容器网络、存储等多个场景的高级容器可观测能力。此外,还介绍了阿里云容器服务在多云管理、成本优化等方面的最新进展,以及即将推出的ACK AI助手2.0,旨在通过智能引擎和专家诊断经验,简化异常数据查找,缩短故障响应时间。
阿里云ACK容器服务生产级可观测体系建设实践
|
2月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
30天前
|
人工智能 运维 监控
容器服务Kubernetes场景下可观测体系生产级最佳实践
阿里云容器服务团队在2024年继续蝉联Gartner亚洲唯一全球领导者象限,其可观测体系是运维的核心能力之一。该体系涵盖重保运维、大规模集群稳定性、业务异常诊断等场景,特别是在AI和GPU场景下提供了全面的观测解决方案。通过Tracing、Metric和Log等技术,阿里云增强了对容器网络、存储及多集群架构的监控能力,帮助客户实现高效运维和成本优化。未来,结合AI助手,将进一步提升问题定位和解决效率,缩短MTTR,助力构建智能运维体系。

相关产品

  • 容器服务Kubernetes版