有货:六层混合云架构打造中国最潮生态圈

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 随着整体业务的高速发展、流量的爆发式增长,有货对其系统做了大面积的系统重构,首先数据中心从传统的单一IDC到“公共云+IDC”混合模式;应用系统也从原来的单体的全站应用演变到目前的以微服务为核心的架构模式;同时采取多级缓存、服务的降级等多维度、全方面地提升系统的可用性。
直播视频:

(点击图片查看视频)


3月18日云栖社区在线实时分享顺利结束,本次由有货CTO李建分享了有货为了应对流量的爆发式增长,对其整个系统做了大面积的系统重构,在数据中心、应用系统等方面全变改进,全方面地提升系统的可用性。本次视频直播的整理文章、视频、幻灯片整理完毕,如下内容。

为什么选择混合云架构?



图一 为何选择混合云架构?

为什么选择混合云架构这个问题可以拆成两个问题,一是为什么使用公共云?另一个问题就是为什么不完全使用公共云,为什么还保留原来的IDC?采用这种混合云的架构是基于以下几个痛点考虑的:
  1. 业务痛点:对于互联网的业务而言,企业必须做到快速响应业务需求,同时互联网业务需求是灵活多变的,传统IDC模式很难保证在短时间内上线一款新的应用。对于公共云来说,其具有的弹性伸缩能力,能应对频繁业务活动;同时像双十一之类的对于流量突发增长活动,公共云可以采取峰值应对,弥补传统IDC的不足;
  2. 运维痛点:对于传统的IDC,要完成一次具体的扩容,必须要从服务器的采购申请,再到服务器的上架,再去安装操作系统,再去部署应用等等一系列操作,十分复杂。同时在扩容过程中,不仅流程过去繁琐,还有可能遇到一系列的问题,比如因为服务器环境差异导致系统故障等问题。这些问题不仅增加了运维过程中的难度,还使得整个系统的可用性大大降低;
  3. 成本控制:一方面使用公共云可以降低整体的硬件、运维成本;另一方面从传统的IDC迁移到公共云上的迁移成本,包括迁移过程中对系统进行改造和迁移时间的成本。所以基于两者考虑,最后选择了混合云的模式;
  4. 安全控制:从安全角度出发,采用混合云模式:将前台应用相关计算、缓存节点全部迁移到阿里云上。核心组数据依然保留在IDC中,保障核心数据的安全。

基于混合云的系统架构


图二 基于混合云的系统架构

上图是有货抽象化的混合云系统架构的整个层次结构。中间是整个服务注册中心,主要分为六层。客户端采用多种高可用策略,在客户端完成降级、缓存、Http DNS等操作;客户端下侧的入口层主要涉及智能DNS、高防DDOS、SLB、Nginx等;从入口层再往下是网关层,在网关层内完成安全、流控、降级等操作;核心业务服务层完成所有的核心业务逻辑,包括服务注册、服务发现、服务调用等等;从服务层再往下就是缓存层,在缓存层内一是对热点数据进行加速,同时也需要考虑缓存数据的更新时效等问题;最下面一层是数据层,主要的数据存储在MySQL中,同时进行数据双活操作,保证数据的一致性。
六层结构的左侧是垂直运维平台,平台在每一层都有相关的运维监控工作,右边是基于大数据平台的数据分析系统。


图三 客户端

下面来具体对每一层架构进行分析。在客户端:
  1. 通过使用HttpDNS,解决LocalDNS的潜在问题。在移动端采取Http直连的模式,防止DNS劫持问题,通过HttpDNS Server获取后端服务的IP列表,避免LocalDNS缓存问题,避免域名解析慢或者解析失败,能快速应对故障处理。同时在高可用方面,混合云的模式下,如果其中一个数据中心出现问题时,可以通过HttpDNS快速进行流量切换;
  2. 在前端使用阿里云的CDN加速图片、Js等静态资源,极大的提升了用户体验;
  3. App客户端通过Cache-Control HTTP头来定义自己的缓存策略,通过预加载和客户端缓存,实现离线化,大幅度提升性能;
  4. 服务降级,客户端根据降级策略可在特定条件下对非关键业务进行降级,以保证核心关键业务的高可用;
  5. 对网络质量监测,根据用户在2G/3G/4G/Wi-Fi等不同网络环境下设置不同的超时参数,以及网络服务的并发数量。同时根据不同的网络质量设计不同的产品体验;
  6. 业务异常监测,在客户端监测用户使用过程中的异常情况、快照信息,实时上报异常数据,实时定位分析问题;
  7. 如果App出现大面积故障,可快速切换至Web App模式,保障了系统的高可用。

图四 入口层

入口层使用智能DNS分发流量至混合云的双数据中心,将应用做成无状态模式,在两个应用中心做对等的部署,突破运营商地域限制,按照地域切分流量,比如将南方的数据流量切入到阿里云上,将北方的流量切换到自建的IDC中。
安全方面,使用阿里云高防DDOS产品防护DDoS攻击。使用阿里云SLB作为应用层负载均衡,实现集群内水平伸缩,同时结合阿里云的ECS,很好地应对流量高峰时、高峰过后的复杂情况。此外,接口层还使用自建Nginx+Lua做反向代理、分流限流、AB测试、灰度发布、故障切换、服务降级等处理措施。


图五 网关层

入口层之下的网关层内也做了很多措施来保障系统高可用性。安全控制方面,在网关层统一完成客户端请求的身份认证,统一完成数据的加密解密;分流与限流方面,将流量按业务切分,路由至后端不同业务线的服务中心,以实现后端服务的实时动态水平扩展。当流量超过预定阀值,系统出现瓶颈的时候自动限制流量进入后端服务,以防止雪崩效应。服务降级方面,在系统出现瓶颈是,自动降级非关键业务,以保证核心业务的正常运转。
熔断机制方面,根据后端服务的健康状况,自动熔断对服务的调用,以防止雪崩效应。异步化方面,网关异步化调用后端服务,避免长期占用请求线程,快速响应处理结果,快速释放线程资源。
在网关层,一级缓存用于加速热点数据;二级缓存用户容灾。请求进入网络层后首先调用一级缓存,如果一级缓存命中,直接将结果返回给客户端;如果没有命中,网关层会调用后端服务,从服务中返回数据,在这个过程中如果服务出现故障无法访问时,网关会访问二级缓存,因为二级缓存是用于容灾处理,所以二级缓存的时间非常长,数据保存24小时。


图六 服务层
服务层主要用于服务化的改造,将在之后的服务化章节详解讲解。

图七 缓存层-用户数据持久化场景

在不同的场景下,采用不同的缓存策略。在用户数据(收藏夹、浏览记录)持久化场景中,采用混合云双数据中心完全对等的部署方式、做双写双活。每个数据中心微服务将数据写入缓存时,均是将数据发送到当前数据中心的MQ中,读取数据是直接从当前数据中心的Redis集群读取。Redis集群同时订阅两个数据中心的MQ的数据,确保两个数据中心部署的Redis集群完全对等,同时Redis集群中的数据也是全量数据,当一个数据中心出现问题时,可以将流量切换到另一个数据中心。


图八 缓存层-共享数据加速,保持数据一致性场景

在共享数据加速,保持数据(如订单数据)一致性的场景下,采用单主多从的缓存模式,在两个数据中心更新缓存时,是先写到一个Redis Master集群中,然后从一个Redis Master集群同步到两个数据中心的Redis Slave集群中,整个请求的逻辑就是:请求进入其中一个机房的微服务中,微服务首先会读取微服务本地的一级缓存,如果没有命中,再去本数据中心的Redis Slave集群进行查询,如果还是没有命中,再回源到本数据中心的数据库中进行查询,将读取后的数据写入到Redis Master集群,同时更新本地的一级缓存和Redis Slave集群,当然Redis Master集群也会将数据同步更新到另一个数据中心的Redis Slave集群中。这种单写多读的缓存模式实现数据加速以及保证数据一致性的要求。目前这种跨机房的主从同步延时并不明显,延迟在一两毫秒左右。


图九 缓存层-共享数据加速但不考虑数据致性场景

在共享数据加速但不考虑数据(商品)一致性的场景下,也是采用多活的理念,即在两个数据中心部署完全对等的缓存集群。在上图的机房一中,当有数据请求时,首先从本地一级缓存进行查询,如果没有命中,再去查本地的Redis集群,依旧没有命中时,回源到本地的数据库进行查询,同时将查询到的数据更新到本数据中心的Redis集群。虽然两个数据中心的缓存集群部署一致,但是在Redis集群中存的数据可能不一致。


图十 数据层

数据层作为六层架构中的最底层,主要的应用还是基于MySQL的主从模式。下面提到的特点是在非核心业务上的一些尝试,并没有大面积应用:
  1. 同城双活,即由业务层来控制数据的实时性和最终一致性,而不是通过数据同步来保证实时性和一致性。
  2. 业务层双写,数据异步分发至两个数据中心,任意机房写入的数据通过异步消息的方式分发到另一个机房,以此来保证两个机房数据的最终一致性。
  3. 业务层通过二级查询保证数据的实时一致性,由于业务层双写只能保证数据的最终一致性,无法保证实时一致性,因此,针对具有实时一致性要求的业务场景,我们通过业务层的二级查询来保证。 
  4. 重复写入应对单机房故障,当任意机房出现故障时,如果写入的数据还没有分发至另一个机房,则由业务层在可用机房重复写入数据,通过算法来生成相同的ID。
  5. 通过failover库为高可用提供双重保险,针对流水型业务数据,在数据库故障时,需要进行主从切换,此时通过业务层将所有数据的读写切换至failover库,主库恢复以后再将流量切回主库。
  6. 垂直拆分与水平拆分结合使用。

服务化

之所以需要服务化,是因为在做服务化之前系统高度耦合,牵一发而动全身,直接影响到系统可用性;同时业务相互影响,系统很难维护;系统逻辑过于耦合,很难进行水平扩展;也无法通过流控、降级等手段保障系统的可用性;此外由于系统的高度耦合,极易产生雪崩效应。因此基于上述原因,服务化改造势在必行。



图十一 服务系统框架

上图是服务化系统的架构,最上面一层是客户端,客户端下面就是服务网关层,再往下就是具体的业务服务中心,目前对电商而言三大核心就是商品、会员、订单中心。围绕服务中中心的是一些服务治理策略,如流控/降级、负载均衡等。系统的最低层是服务注册中心。



图十二 服务注册、发现、调用

对于服务化而言,最核心的就是服务的发现、注册、调用。目前有货采用的是Spring+Register+Zookeeper搭建的最简单的服务框架,通过Zookeeper完成的服务注册和发现,通过Register完成服务的调用。


图十三 服务化负载均衡

服务化还有一个很重要的要求就是服务化负载均衡,一般是有两种方案:
  1. 集中式的LoadBalance,在服务消费者和提供者之间通过阿里云的SLB或者F5搭建独立的LoadBalance,通过集中式的负载均衡设备完成对服务调用的负载均衡;
  2. 在进程内做负载均衡,即软负载的方式,将负载均衡策略渗入到服务框架里面,服务消费者作为负载均衡的客户端,请求只需要从服务注册中心获取最新的服务列表,利用服务框架自身携带的负载均衡策略,完成负载均衡的调用。


图十四 服务降级和流量控制

在服务降级方面,通过使用开源的Hystrix配置服务超时时间,当服务调用超时时,直接返回或执行Fallback逻辑。另外基于Hystrix提供的熔断器组件,可以自动运行或手动调用对当前服务进行暂停后再重新调用服务。流量控制方面,通过计数器服务限定单位时间内当前服务的最大调用次数(比如600次/分钟),如果超过则拒绝,以保证系统的可用性;同时为每个服务提供一个小的线程池,如果线程池已满,调用将被立即拒绝,默认不采用排队,加速失败判定时间。


图十五 服务化的监控、优化、调用链分析

服务化中,对于服务的监控、性能优化以及调用链的分析也尤为重要。通过Hystrix提供的服务化监控工具实时观察在线服务的运行状态,有了监控之后可以进行相应的性能优化。对于调用链分析,当请求从网关层进入时,追加一个Trace ID,Trace ID会在整个调用过程中保留,最后通过分析Trace ID将整个请求的调用链串联起来。


自动化运维平台



图十六 自动化运维

目前采用的混合云双数据中心模式,如果依旧采用传统的手工部署应用,做文件拷贝、同步等工作,很容易出现版本不一致、文件更新异常等问题。因此在混合云模式下构建自动化运维平台需要考虑以下核心问题:
  1. 首先在运维平台上要能完成对双云的一键式的自动化部署发布,以及部署失败后的一键快速回滚;
  2. 在运维平台中需要完成对流量的管理控制,可以完成对整个应用系统的容量规划;
  3. 最核心的部分是运维平台实现监控和报警,包括对业务层级监控、应用系统的监控、以及系统层级的IO、磁盘、网络的监控。
  4. 在运维平台中,需要做到应对故障快速恢复的预案,分析系统可能出现的故障点,在出现故障时,通过自动化的脚本对故障进行恢复。
QA环节:

1、有货历史架构的演变历程,达到什么样的规模时才选用混合云模式?
答:企业到了一定阶段,需要去考虑效率和成本时,以及系统的稳定性,自然会选择混合云的方式,目前是将需要弹性伸缩、流量突发的业务迁移到公共云上,后台运营等相对稳定的业务保留在传统的IDC。当流量访问并发达到500-1000时,通过IDC中增加物理机支撑带来维护和成本上的问题时,去考虑选择混合云模式。

2、如何完成多中心的自动化部署?
答:有货在这一方面做的比较简单,通过简单的脚本方式,使用Shell脚本打通版本管理、编译打包、目标服务器,将它们串联起来,在此基础之上,再简单的封装一个图形化的界面,方便操作和权限控制,底层就是调用这一套脚本来完成的。

3、为什么要进行异地的双写,这样做成本是不是比较高?
答:异地的双写是针对不同的应用场景,对一些实时性和一致性要求很是很高的场景,整个应用允许一定的延迟,可以选择异地双写。异地双写的成本是非常高的,目前有货是同城双写,IDC和公共云之间通过专线连接,有效降低了时间延迟。

4、前台后台进了系统解耦,如何做到两者互不影响?
答:刚开始整个应用系统都在一个数据中心部署,前台和后台都采用同一套数据库,后台的批量操作有可能影响到前台的运行。首先需要做数据库的解耦,即前台和后台不共用数据库,目前通过MQ的方式做前后台的数据交互。

5、如何进行合理的服务拆分?
答:目前服务拆分是针对不同的业务线进行的,对于电商来讲,会分为商品、订单、会员等几个大的业务线,业务线对应着各种业务中心,服务中心下面还分布着不同的服务集群,目前采用的是面向领域的模式进行拆分。例如商品服务,将商品的价格、库存等销售属性和非销售属性分别拆成不同的模型,针对不同的模型,进行提供服务。

6、保证系统高可用的核心理念?
答:核心理念不是让系统很稳健,不出故障。而是恰恰相反,任何系统的节点,软件或者硬件出现故障时,整个系统依旧可用,即某一点的故障不使得整个系统瘫痪。

关于分享者:

李健 有货CTO

有货旨打造中国潮流生态圈,其核心业务包括有货App、YOHO、Mars应用。有货也积极举办线下活动,例如举办潮流嘉年华等活动。YOHO!将在2016年5月在艾尚开3000平方米的旗舰店,将集理发、拍照、咖啡、读书等为一体。该店将采用完全的电子货架,也是全球唯一一个完全的电子货架模式。

相关系列文章:
相关文章
|
2月前
|
存储 负载均衡 Kubernetes
混合云和多云策略:混合云架构设计详解
混合云和多云策略:混合云架构设计详解
112 1
|
6月前
|
弹性计算 运维 Kubernetes
阿里云ECS与混合云策略的结合,不仅为企业搭建了一个既灵活又稳定的IT基础架构,还为业务的快速发展与创新提供了坚实的技术支撑。
【7月更文挑战第3天】阿里云ECS在混合云中扮演关键角色,提供弹性计算资源和多样计费模式,确保业务连续性与灵活性。通过VPC互通、应用迁移、数据同步服务,如VPC对等连接、DTS,实现云上云下资源的高效整合。结合安全解决方案,保证在混合环境下的合规与安全。阿里云ECS助力企业数字化转型,应对市场变化。
138 1
|
6月前
|
分布式计算 运维 大数据
混合云模式下 MaxCompute + Hadoop 混搭大数据架构实践。
除了资源效率和成本的优势外,混合云模式还为斗鱼带来了可量化的成本、增值服务以及额外的专业服务。阿里云的专业团队可以为斗鱼提供技术咨询和解决方案,帮助斗鱼解决业务难题。此外,计算资源的可量化也使得斗鱼能够清晰地了解资源使用情况,为业务决策提供依据。
|
存储 分布式计算 Hadoop
【大数据处理框架】Hadoop大数据处理框架,包括其底层原理、架构、编程模型、生态圈
【大数据处理框架】Hadoop大数据处理框架,包括其底层原理、架构、编程模型、生态圈
422 0
|
SQL 分布式计算 算法
【大数据处理框架】Spark大数据处理框架,包括其底层原理、架构、编程模型、生态圈
【大数据处理框架】Spark大数据处理框架,包括其底层原理、架构、编程模型、生态圈
556 0
|
存储 缓存 Kubernetes
基于 ACK Fluid 的混合云优化数据访问(一):场景与架构
基于 ACK Fluid 的混合云优化数据访问(一):场景与架构
|
机器学习/深度学习 存储 人工智能
带你读《云原生架构白皮书2022新版》——vivo AI计算平台的ACK混合云实践
带你读《云原生架构白皮书2022新版》——vivo AI计算平台的ACK混合云实践
277 8
|
机器学习/深度学习 存储 人工智能
《云原生架构容器&微服务优秀案例集》——01 互联网——vivo AI 计算平台的 ACK One 混合云实践
《云原生架构容器&微服务优秀案例集》——01 互联网——vivo AI 计算平台的 ACK One 混合云实践
472 0
|
1月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
2月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
53 3

热门文章

最新文章

下一篇
开通oss服务