网络 (TCP/IP 四层协议中常见网络协议)

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: 网络 (TCP/IP 四层协议中常见网络协议)

应用层


DNS (Domain Name System) 域名系统.

DNS 是一整套从域名映射到 IP的系统


NAT 技术

解决 IP 地址不够用的问题. 可以实现私有 IP 和全局 IP 的相互转换

NAPT 技术

使用 IP + Port 唯一确定局域网中的主机


传输层


TCP 协议 (Transmission Control Protocol 传输控制协议)

TCP 协议段格式


6位标志位:

  • URG : 紧急指针是否有效
  • ACK : 确认序号是否有效
  • PSH : 提示接收端应用程序立刻从 TCP 缓冲区中把数据读走
  • PST : 对方要求重新建立连接. 携带 PST 标识的报文称为复位报文段
  • SYN : 请求建立连接. 把携带 SYN 标识的报文称为同步报文段
  • FIN : 通知对方, 连接要关闭了. 将携带 FIN 标识的报文称为结束报文段

紧急指针: 标识哪部分数据时紧急数据

TCP 的确认应答机制(安全机制)

TCP 将每个字节的数据编号, 即序列号.

每一个 ACK 带有对应的确认序号. 代表该序号之前的数据已经发送完毕, 下一次请从该序号对应的数据开始发.

TCP 的超时重传机制(安全机制)

主机 A 给主机 B 发送数据后, 主机 A 为收到确认应答 (ACK), 在一个时间间隔的等待后, 会重传数据

未收到确认应答, 有两种情况

  • 数据丢了: 没有办法, 只能重传数据
  • ACK 丢了: 如果主机 A 重传数据, 主机 B 会收到重复的包, 于是就会根据 序号, 对缓冲区内的数据包进行排序, 去重.

TCP 的连接管理机制(安全机制)

三次握手建立连接, 四次挥手断开连接

滑动窗口 (效率机制)

一收一发效率较低, 因此可以一次发送多条数据 (将多个段的等待时间重叠)

窗口大小 : 无需等待确认应答而可以继续发送数据的最大值 (这里假定窗口大小为 4000)

OS 内核为了维护滑动窗口, 需要开辟发送缓冲区来记录未应答数据 (应答后删除)

窗口越大, 网络吞吐率越高


丢包处理

丢包有两种情况:

  1. ACK 丢了

假设这里的 ACK = 1001 丢了

对于 server 来说, 我已经收到 1~1000 的数据, 不管 1001的ACK有没有被 client 接收到, 当我接收到 1001 ~ 2000 的数据时, 就可以直接返回 ACK = 2001

ACK 的含义是, 确认序号之前数据都已收到, 即对于 2001 的 ACK 来说, 1~2000 的数据都已收到

client 收到 2001的ACK , 即使没有收到 1001 的ACK , 也会默认 1~1000 是发送成功的

部分 ACK 丢失并不要紧, 可以通过后续 ACK 进行确认

  1. 数据包丢了

该机制称为 “高速重发控制” (快重传)


流量控制 (安全机制)

接收端处理数据能力有限, 如果接收端的缓冲区被打满, 发送端仍发送数据, 那么就会出现丢包, 重传等一系列机制

TCP 支持根据接收端的处理能力, 来控制发送端的发送速度, 该机制称为 “流量控制”

  • 接收端将自己剩余的窗口大小, 通过 ACK 中, TCP 首部的 “窗口大小” 和 “窗口扩大因子” 通知给发送端
  • 发送端根据 ACK 中的信息来决定自身的数据发送速度
  • 如果接收端缓冲区已满, 会将窗口设置为 0.
    此时发送端不再发送数据, 而是会定期发送一个 窗口探测数据段, 来获取接收方的窗口大小信息

拥塞机制 (安全机制)

TCP 连接建立初, 如果突然发送大量数据, 就很可能出现问题

处理方式: 慢启动机制

先发送少量数据, 探测网络拥堵状态, 再决定以多大的速度进行数据传输

引入概念 – 拥塞窗口 cwnd

  • 发送刚开始时, 定义 拥塞窗口大小为 1
  • 每次收到一个 ACK, 拥塞窗口大小加 1 (以传输轮次为标准, 其实每一轮拥塞窗口的大小是翻倍的)
  • 每次发送数据时, 将上次 ACK 中缓冲区窗口大小 和 拥塞窗口大小做比较, 取较小值作为实际发送的窗口大小 (实际发送数据的速度)

慢启动的启动速度慢, 但是增长速度快 (指数级别)

引入概念 – 慢启动的阈值 (ssthresh)

  • 当拥塞窗口超过这个阈值时, 将按照线性方式进行增长
  • 当 TCP 开始启动时, ssthresh 等于窗口最大值
  • 每次超时重发的时候, ssthresh 减到当前拥塞窗口大小的一半 (ssthresh = cwnd [网络拥塞时])
    并且拥塞窗口大小, 会置回 1 (cwnd = 1)


延迟应答(效率机制)

接收到数据时, 如果接收数据的主机立刻返回 ACK, 则返回的窗口会较小 (返回过程和新数据的传输过程是需要耗时的, 接收数据的主机已经处理了很多数据). 因此我们可以慢一些再返回数据

此外会对 慢一些 进行限制, 防止太慢让发送端误以为丢包, 进行超时重传了

  • 数量限制: 每个 N 条就返回一次 ACK
  • 时间限制: 超过最大延迟时间 (MSL) 就返回一次 ACK
  • 一般 N 取2, MSL 取 200ms

捎带应答(效率机制)

ACK 随接收端返回的数据一同返回

TCP 的性质 : 大小限制

  • 创建 Socket 时, 同时会在操作系统内核中创建一个发送缓冲区和一个接收缓冲区
  1. 调用 write 时, 会将数据先写入发送缓冲区
  2. 如果发送的数据太长, 会被拆分成多个 TCP 的数据包发出
  1. 如果发送的数据太短, 会在缓冲区等待长度差不多, 或者其他时机再发出
  2. 接收数据时, 数据也是从网卡驱动程序到达内核的接收缓冲区
  3. 应用程序调用 read , 从接收缓冲区拿数据
  • 由于缓冲区的存在, TCP 程序的读写操作不需要一一匹配
  1. 写1000字节的数据, 可以写一次大小1000字节, 也可以写100次大小100的字节
  2. 读同理

粘包问题

包 : 应用层数据包

站在传输层角度, TCP 时一个一个的报文过来的, 按照序号有序排放在缓冲区中

站在应用层角度, 能看到的只是一串连续的字节数据

粘包问题就是接收端无法区分应用层数据包之间的边界, 导致读取多个完整或不完整数据包的问题

解决粘包问题的关键是明确数据包的边界

  • 数据包定长: 按照固定大小读取
  • 数据包变长:
  • 在包头位置约定总包长度
  • 在包与包之间, 使用明确分隔符

TCP 异常情况

进程终止 / 程序重启 : 进程结束时会释放文件描述符, 此时仍可以发送 FIN , 即和正常关闭无区别

机器掉电 / 网线断开 : 接收端会认为连接正常, 仍会进行数据收发

当接收端发数据时, 感知到发送端已断开连接, 就会触发 reset

如果接收端不进行发数据操作, 也会有保活机制定期检测对方的状态

基于 TCP 的应用层协议

HTTP / HTTPS / SSH / Telnet / FTP / SMTP


UDP 协议

UDP 特性 : 面向数据报

应用层交给UDP多长的报文, UDP 原样发送, 既不会拆包, 也不会合并


基于 UDP 的应用层协议

NFS / TFTP / DHCP / BOOTP / DNS

TCP 和 UDP 的应用场景

  • TCP 用于可靠传输情况. eg: 文件传输, 重要状态更新 …
  • UDP 用于高速传输, 对实时性要求高的通信领域. eg: 广播, 视频传输, 早期 QQ

网络层


网络层协议进行路径选择

IP 协议

协议头格式


标识: 唯一标识 主机发送的报文. 同一报文在链路层的分片 标识相同 (id 相同)

3位标志字段

  • 保留
  • 禁止分片 (1 – 禁止)
  • 更多分片 (类似于结束标志, 0 – 结束)

分片偏移: 分片相对于原始 IP 报文开始处的偏移

生存时间 TTL: 数据到达目的地的最大报文跳数

协议: 表示上层协议是什么


数据链路层

以太网

以太网是一种技术标准, 应用于数据链路层和物理层, 而不是一个具体的网络

以太网帧格式

地址: MAC 地址

类型: 分为三种

  1. IP
  2. ARP
  3. PARP

MTU 最大传输单元

不同数据链路层对物理层, 产生不同的限制

如果一个数据包从以太网 路由到 拨号链路上, 数据包长度大于 拨号链路的 MTU, 则数据包就要进行分片操作


ARP 协议

介于网络层和数据链路层之间的协议

作用: 建立主机 IP 和 MAC 地址的映射关系

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
3天前
|
网络协议 网络虚拟化
接收网络包的过程——从硬件网卡解析到IP
【9月更文挑战第18天】这段内容详细描述了网络包接收过程中机制。当网络包触发中断后,内核处理完这批网络包,会进入主动轮询模式,持续处理后续到来的包,直至处理间隙返回其他任务,从而减少中断次数,提高处理效率。此机制涉及网卡驱动初始化时注册轮询函数,通过软中断触发后续处理,并逐步深入内核网络协议栈,最终到达TCP层。整个接收流程分为多个层次,包括DMA技术存入Ring Buffer、中断通知CPU、软中断处理、以及进入内核网络协议栈等多个步骤。
|
8天前
|
网络协议 网络架构 数据格式
TCP/IP基础:工作原理、协议栈与网络层
TCP/IP(传输控制协议/互联网协议)是互联网通信的基础协议,支持数据传输和网络连接。本文详细阐述了其工作原理、协议栈构成及网络层功能。TCP/IP采用客户端/服务器模型,通过四个层次——应用层、传输层、网络层和数据链路层,确保数据可靠传输。网络层负责IP寻址、路由选择、分片重组及数据包传输,是TCP/IP的核心部分。理解TCP/IP有助于深入掌握互联网底层机制。
35 2
|
10天前
|
网络协议 Java
谈谈TCP/IP网络编程
【9月更文挑战第1天】在当今数字化的世界中,网络通信是连接各种设备和系统的关键。TCP/IP协议作为互联网通信的基石,被广泛应用于各种网络场景。了解TCP/IP网络编程的概念,并掌握如何在Java中实现TCP/IP通讯,对于开发人员来说是非常重要的。
39 4
|
9天前
|
网络协议 安全 数据安全/隐私保护
动静态IP的网络协议有什么不同
IP地址分为静态和动态两种分配方式。静态IP地址由管理员手动分配,确保设备具有固定且唯一的网络标识,适用于服务器等关键设备。动态IP地址则通过DHCP服务器自动分配,提供更高的灵活性和管理效率,适合个人电脑和移动设备。两者在网络配置、管理和安全性方面各有优劣,需根据具体应用场景进行选择。静态IP地址虽稳定但配置复杂,安全性较低;动态IP地址配置简单,安全性更高,能有效防止针对固定IP的攻击。
|
17天前
|
网络协议 C语言
C语言 网络编程(十三)并发的TCP服务端-以进程完成功能
这段代码实现了一个基于TCP协议的多进程并发服务端和客户端程序。服务端通过创建子进程来处理多个客户端连接,解决了粘包问题,并支持不定长数据传输。客户端则循环发送数据并接收服务端回传的信息,同样处理了粘包问题。程序通过自定义的数据长度前缀确保了数据的完整性和准确性。
|
17天前
|
网络协议 C语言
C语言 网络编程(十四)并发的TCP服务端-以线程完成功能
这段代码实现了一个基于TCP协议的多线程服务器和客户端程序,服务器端通过为每个客户端创建独立的线程来处理并发请求,解决了粘包问题并支持不定长数据传输。服务器监听在IP地址`172.17.140.183`的`8080`端口上,接收客户端发来的数据,并将接收到的消息添加“-回传”后返回给客户端。客户端则可以循环输入并发送数据,同时接收服务器回传的信息。当输入“exit”时,客户端会结束与服务器的通信并关闭连接。
|
17天前
|
网络协议 C语言
C语言 网络编程(十二)TCP通信创建-粘包
TCP通信中的“粘包”现象指的是由于协议特性,发送方的数据包被拆分并在接收方按序组装,导致多个数据包粘连或单个数据包分割。为避免粘包,可采用定长数据包或先传送数据长度再传送数据的方式。示例代码展示了通过在发送前添加数据长度信息,并在接收时先读取长度后读取数据的具体实现方法。此方案适用于长度不固定的数据传输场景。
|
14天前
|
网络协议
网络协议概览:HTTP、UDP、TCP与IP
理解这些基本的网络协议对于任何网络专业人员都是至关重要的,它们不仅是网络通信的基础,也是构建更复杂网络服务和应用的基石。网络技术的不断发展可能会带来新的协议和标准,但这些基本协议的核心概念和原理将继续是理解和创新网络技术的关键。
32 0
|
14天前
|
网络协议 网络架构
IP网络协议的深度讲解
IP协议作为互联网的基础,其设计的简洁性和强大功能使得全球范围内的网络通信成为可能。通过不断的发展和改进,尤其是IPv6的推广使用,IP协议将继续支持着日益增长的网络通信需求。了解IP协议的工作原理,对于任何网络技术的学习和应用都是基础且必要的。
24 0
|
2天前
|
SQL 安全 算法
网络安全与信息安全:保护你的数字世界
【9月更文挑战第18天】在这个数字信息时代,网络安全和信息安全的重要性不言而喻。从网络漏洞的发现到加密技术的应用,再到安全意识的提升,每一个环节都至关重要。本文将深入探讨这些主题,并提供实用的建议和代码示例,以帮助读者更好地保护自己的数字世界。
23 11