实时计算 Flink版产品使用合集之使用PostgreSQL作为源时,遇到before字段为NULL该如何处理

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC哪位专家知道,postgre-cdc update时,before为null?


Flink CDC哪位专家知道,postgre-cdc update时,before为null?


参考回答:

在Flink CDC中,当使用PostgreSQL作为源时,可能会遇到before字段为NULL的情况。

这是因为在PostgreSQL的逻辑复制流中,对于UPDATE操作,默认情况下只会包含被更新的字段以及其新值(after)。而before字段将被设置为NULL,表示在逻辑复制流中没有包含之前的值。

解决这个问题的一种方法是使用PostgreSQL的逻辑解码插件(logical decoding plugin)来捕获更详细的变更信息,包括旧值和新值。通过配置适当的插件,可以在逻辑复制流中包含"before"字段,并获取更新之前的数据。

以下是一些可能有助于解决此问题的步骤:

  1. 确保PostgreSQL版本支持逻辑复制和逻辑解码功能。逻辑复制功能在PostgreSQL 9.4及更高版本中可用。
  2. 在PostgreSQL中启用逻辑解码插件。例如,可以使用pgoutput插件。请参考PostgreSQL文档了解如何启用和配置逻辑解码插件。
  3. 使用Flink CDC连接到PostgreSQL并配置适当的解码器。在Flink CDC的PostgreSQL Source配置中,可以指定逻辑解码插件的名称和相关参数。

请注意,使用逻辑解码插件可能会增加一些额外的配置和管理工作,并且会产生更多的数据传输量。确保根据实际需求和环境选择适当的解码插件,并评估其对性能和资源消耗的影响。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575334



问题二:flink cdc生产环境的高可用部署架构图?


flink cdc生产环境的高可用部署架构图?


参考回答:

Flink CDC 的生产环境高可用部署架构图主要包含以下几个部分:

  1. Flink SQL CDC:作为核心组件,支持 CDC 模式的数据同步。它能从各种数据源中实时采集、预计算并同步数据,如MySQL、Oracle、MongoDB等。
  2. Elasticsearch:作为实时报表和即席分析引擎,接收并存储由Flink SQL CDC同步过来的数据。
  3. Kafka或Pulsar消息队列:在需要的时候,Flink CDC可以将数据写入这些消息队列,实现异步处理和解耦。
  4. 下游存储系统:如Hudi、Iceberg、Paimon等数据湖,或者支持写入各种数据仓库,以提供持久化和备份。

这种架构的优点在于,它借助了Flink丰富的上下游生态,具有高度的灵活性和可扩展性。同时,Flink相对于Kafka Streams而言,其算子和SQL模块更为成熟和易用,可以通过调整算子并行度来优化作业性能。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575332



问题三:Flink CDC中mongo-cdc 复制历史数据过慢有没啥解决方案啊?


Flink CDC中mongo-cdc 复制历史数据过慢有没啥解决方案啊,1小时才1千万条,,要同步到最新不知道何年何月去了?


参考回答:

MongoDB CDC连接器在复制历史数据时可能会存在效率问题。一种可能的解决方案是调整Flink作业的并行度,这可以优化任务性能。此外,您也可以考虑使用Flink的CDC机制,即Change Data Capture,该机制可以捕捉数据库表的增删改查操作,这是目前非常成熟的同步数据库变更方案。

然而,请注意,虽然这些方法可以提高数据传输的效率,但它们可能无法完全解决问题,因为MongoDB CDC同步历史数据的速度本质上受限于源数据库MongoDB的性能和网络带宽。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575330



问题四:Flink CDC中server-id mysql cdc 抽取多个表是不是一般要配置好些?


Flink CDC中server-id mysql cdc 抽取多个表是不是一般要配置好些?


参考回答:

在Flink CDC中,如果要抽取多个表的数据,确实可能需要进行一些额外的配置。MySQL CDC连接器会首先通过表的主键将表划分成多个块(chunk),然后并行读取这些块的数据。因此,如果你要抽取的多个表的主键设计得合理,那么这个并行读取的过程可以有效地提高数据抽取的效率。

此外,你还需要为每个Reader设置不同的server-id。server-id是单个节点的标识,如果有多个节点,那么每个节点的server-id应该是唯一的。你可以使用MySQL的SHOW VARIABLES LIKE 'server_id'命令来查看当前数据库的server-id。

总的来说,抽取多个表的数据时,除了对MySQL CDC连接器进行基本的配置外,还需要注意主键的设计以及server-id的设置。这些都会影响到数据抽取的效率和准确性。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575329



问题五:Flink CDC中job的配置文件是写在哪里的?


Flink CDC中job的配置文件是写在哪里的。比如生产环境的配置(数据库地址啥的)和开发的环境的配置。是怎么区分开的?


参考回答:

Flink CDC中的作业配置可以通过多种方式进行管理和区分,根据实际需求和部署环境的不同。

  1. 作业参数:您可以在提交Flink作业时,通过命令行或API设置作业参数。例如,可以使用-Dkey=value命令行选项来传递配置参数。在这种方式下,您可以在不同环境中使用不同的参数值,以区分生产和开发环境的配置。
  2. 配置文件:Flink允许使用配置文件来存储作业配置。这些配置文件可以是YAML、Properties或其他格式的文件。您可以为每个环境创建独立的配置文件,并使用相应环境的文件路径来加载不同的配置。例如,可以使用-c命令行选项来指定配置文件的路径。
  3. 集群配置:您可以配置Flink集群的全局配置,包括数据库地址、资源配置等。这些配置会对所有作业生效,无论是生产环境还是开发环境。当然,在部署多个Flink集群时,也可以根据不同的集群配置来区分环境。
  4. 环境变量:您还可以使用环境变量来设置作业配置参数。通过在不同环境中设置不同的环境变量值,可以区分生产和开发环境的配置。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575328

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
zdl
|
3月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
204 56
|
3月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
4月前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
65 2
|
4月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
9月前
|
机器学习/深度学习 SQL 关系型数据库
【MySQL进阶之路丨第十一篇】一文带你精通MySQL NULL值处理、正则表达式
【MySQL进阶之路丨第十一篇】一文带你精通MySQL NULL值处理、正则表达式
100 0
|
9月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之从MySQL同步数据到Doris时,历史数据时间字段显示为null,而增量数据部分的时间类型字段正常显示的原因是什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
9月前
|
SQL 关系型数据库 MySQL
python在mysql中插入或者更新null空值
这段代码是Python操作MySQL数据库的示例。它执行SQL查询从表`a_kuakao_school`中选取`id`,`university_id`和`grade`,当`university_id`大于0时按升序排列。然后遍历结果,根据`row[4]`的值决定`grade`是否为`NULL`。若不为空,`grade`被格式化为字符串;否则,设为`NULL`。接着构造UPDATE语句更新`university`表中对应`id`的`grade`值,并提交事务。重要的是,字符串`NULL`不应加引号,否则更新会失败。
198 2
|
6月前
|
SQL 关系型数据库 MySQL
在 MySQL 中使用 IS NULL
【8月更文挑战第12天】
714 0
在 MySQL 中使用 IS NULL
|
6月前
|
SQL 关系型数据库 MySQL
mysql不等于<>取特定值反向条件的时候字段有null值或空值读取不到数据
对于数据库开发的专业人士来说,理解NULL的特性并知道如何正确地在查询中处理它们是非常重要的。以上所介绍的技巧和实例可以帮助你更精准地执行数据库查询,并确保数据的完整性和准确性。在编写代码和设计数据库结构时,牢记这些细节将有助于你避免许多常见的错误,提高数据库应用的质量与性能。
172 0
|
7月前
|
SQL 存储 索引
MySQL设计规约问题之为什么应该把字段定义为NOT NULL并且提供默认值
MySQL设计规约问题之为什么应该把字段定义为NOT NULL并且提供默认值

相关产品

  • 实时计算 Flink版