python相关库的安装:pandas,numpy,matplotlib,statsmodels

简介: python相关库的安装:pandas,numpy,matplotlib,statsmodels

windows+r  打开窗口



image.png

输入 cmd

image.png


方法一:pip install +库名


直接输入 pip install +库名


例如:安装  matplotlib


pip install  matplotlib

个人感觉比较方法一比较慢,还可能安装不成功,不是很推荐!


方法二:很快


pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple


例如安装matplotlib


pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

该过程不仅安装了  matplotlib ,还安装了依赖的 numpy、python-dateutil、kiwisolver 、 pillow 、pyparsing 、cycler 、six 库。


方法三:镜像安装


三个镜像地址——可选择使用,方法相同:


清华:https://pypi.tuna.tsinghua.edu.cn/simple

阿里云:http://mirrors.aliyun.com/pypi/simple/

中国科技大学:https://pypi.mirrors.ustc.edu.cn/simple/


步骤:

1.首先找到python.exe的地址

第一种情况打开cmd,输入where python,查看python.exe的地址。

where python

image.png


第二种情况:

如果没有显示本机上的python解释器,可以在电脑下端的搜索框中搜python,会显示python解释器,选择一个你要用的解释器版本。我选择的是3.12版本的

image.png

打开文件位置:鼠标右键

image.png

image.png

接着继续打开这个python 3.12版本快捷方式的文件所在位置。 :鼠标右键

image.png

复制python.exe地址

image.png


得出来,文件地址:""E:\Python\python.exe""


在cmd命令框输入命令:

以安装statsmodels为例

image.png

python解释器地址 -m pip install 第三方库名 -i  镜像地址


\Python\python.exe -m pip install statsmodels -i https://pypi.tuna.tsinghua.edu.cn/simple

后面应该就下载成功了!


以上三种方法最后在Pycharm查看是否下载成功


新建一个项目,打开  设置  即settings...  


image.png


查看     Python解释器   即  Python Interpreter


将解释器地址确认为你第一步确认的python解释器地址


image.png


然后点击添加解释器


添加本地解释器


image.png


然后点击系统解释器,确认解释器地址为第一步python.exe的地址

image.png


之一直点确认OK,到下面的页面,可以看到第一步的python解释器地址在这里,表示为这个新项目配置好了第一步搜索的地址所对应的python解释器。


这样就配置好了


方法四:在pycharm里面直接下载



image.png


相关文章
|
3月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
510 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
3月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
251 0
|
2月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
261 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
2月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
330 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
数据处理 Python
如何使用Python的Pandas库进行数据排序和排名
【4月更文挑战第22天】Pandas Python库提供数据排序和排名功能。使用`sort_values()`按列进行升序或降序排序,如`df.sort_values(by='A', ascending=False)`。`rank()`函数用于计算排名,如`df['A'].rank(ascending=False)`。多列操作可传入列名列表,如`df.sort_values(by=['A', 'B'], ascending=[True, False])`和分别对'A'、'B'列排名。
443 2
|
索引 Python
如何使用Python的Pandas库进行数据合并和拼接?
Pandas的`merge()`函数用于数据合并,如示例所示,根据'key'列对两个DataFrame执行内连接。`concat()`函数用于数据拼接,沿轴0(行)拼接两个DataFrame,并忽略原索引。
355 2
|
数据处理 Python
如何使用Python的Pandas库进行数据排序和排名?
Pandas在Python中提供数据排序和排名功能。使用`sort_values()`进行排序,如`df.sort_values(by='A', ascending=False)`进行降序排序;用`rank()`进行排名,如`df['A'].rank(ascending=False)`进行降序排名。多列操作可传入列名列表,如`df.sort_values(by=['A', 'B'], ascending=[True, False])`。
443 6
|
索引 Python
如何在Python中,Pandas库实现对数据的时间序列分析?
Pandas在Python中提供强大的时间序列分析功能,包括:1) 使用`pd.date_range()`创建时间序列;2) 通过`pd.DataFrame()`将时间序列转为DataFrame;3) `set_index()`设定时间列作为索引;4) `resample()`实现数据重采样(如按月、季度);5) `rolling()`进行移动窗口计算,如计算移动平均;6) 使用`seasonal_decompose()`进行季节性调整。这些工具适用于各种时间序列分析场景。
304 0
|
数据挖掘 索引 Python
如何在Python中,Pandas库实现对数据的时间序列分析?
【4月更文挑战第21天】Pandas在Python中提供了丰富的时间序列分析功能,如创建时间序列`pd.date_range()`,转换为DataFrame,设置时间索引`set_index()`,重采样`resample()`(示例:按月`'M'`和季度`'Q'`),移动窗口计算`rolling()`(如3个月移动平均)以及季节性调整`seasonal_decompose()`。这些工具适用于各种时间序列数据分析任务。
290 2
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
336 1

推荐镜像

更多