阿里面试:说说自适应限流?

简介: 限流想必大家都不陌生,它是一种控制资源访问速率的策略,用于保护系统免受过载和崩溃的风险。限流可以控制某个服务、接口或系统在一段时间内能够处理的请求或数据量,以防止系统资源耗尽、性能下降或服务不可用。常见的限流策略有以下几种:1. **令牌桶算法**:基于令牌桶的方式,限制每个单位时间内允许通过的请求量,请求量超出限制的将被拒绝或等待。2. **漏桶算法**:基于漏桶的方式,限制系统处理请求的速率,请求速率过快时将被限制或拒绝。3. **计数器算法**:通过计数器记录单位时间内的请求次数,并根据设定的阈值进行限制。通过合理的限流策略,可以保护系统免受恶意攻击、突发流量和资源

限流想必大家都不陌生,它是一种控制资源访问速率的策略,用于保护系统免受过载和崩溃的风险。限流可以控制某个服务、接口或系统在一段时间内能够处理的请求或数据量,以防止系统资源耗尽、性能下降或服务不可用。

常见的限流策略有以下几种:

  1. 令牌桶算法:基于令牌桶的方式,限制每个单位时间内允许通过的请求量,请求量超出限制的将被拒绝或等待。
  2. 漏桶算法:基于漏桶的方式,限制系统处理请求的速率,请求速率过快时将被限制或拒绝。
  3. 计数器算法:通过计数器记录单位时间内的请求次数,并根据设定的阈值进行限制。

通过合理的限流策略,可以保护系统免受恶意攻击、突发流量和资源滥用的影响,确保系统稳定和可靠运行。在实际应用中,限流常用于接口防刷、防止 DDoS 攻击、保护关键服务等场景。

1.限流实现

在 Java 中,限流的实现方式有很多种,例如以下这些:

  1. 单机限流:使用 JUC 下的 Semaphore 限流,或一些常用的框架,例如 Google 的 Guava 框架进行限流,但这种限流方式都是基于 JVM 层面的内存级别的单台机器限流。
  2. 组件限流:单机限流往往不适用于分布式系统,而分布式系统可以通过组件 Sentinel、Hystrix 对整个集群进行限流。
  3. 反向代理限流(Nginx 限流):通常在网关层的上游,我们会使用 Nginx(反向代理)一起来配合使用,也就是用户请求会先到 Nginx(或 Nginx 集群),然后再将请求转发给网关,网关再调用其他的微服务,从而实现整个流程的请求调用,因此 Nginx 限流也是分布式系统中常用的限流手段。

2.自适应限流

所谓的自适应限流是结合应用的 Load、CPU 使用率、总体平均 RT、入口 QPS 和并发线程数等几个维度的监控指标,通过自适应的流控策略,让系统的入口流量和系统的负载达到一个平衡,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性。

类似的实现思路还有很多,如,自适应自旋锁、还有 K8S 中根据负载进行动态扩容等。

3.实现思路

以 Sentinel 中的自适应限流来说,它的实现思路是用负载(load1)作为启动控制流量的值,而允许通过的流量由处理请求的能力,即请求的响应时间以及当前系统正在处理的请求速率来决定。

为什么要这样设计?

长期以来,系统自适应保护的思路是根据硬指标,即系统的负载 (load1) 来做系统过载保护。当系统负载高于某个阈值,就禁止或者减少流量的进入;当 load 开始好转,则恢复流量的进入。这个思路给我们带来了不可避免的两个问题:

  • load 是一个“果”,如果根据 load 的情况来调节流量的通过率,那么就始终有延迟性。也就意味着通过率的任何调整,都会过一段时间才能看到效果。当前通过率是使 load 恶化的一个动作,那么也至少要过 1 秒之后才能观测到;同理,如果当前通过率调整是让 load 好转的一个动作,也需要 1 秒之后才能继续调整,这样就浪费了系统的处理能力。所以我们看到的曲线,总是会有抖动。
  • 恢复慢。想象一下这样的一个场景(真实),出现了这样一个问题,下游应用不可靠,导致应用 RT 很高,从而 load 到了一个很高的点。过了一段时间之后下游应用恢复了,应用 RT 也相应减少。这个时候,其实应该大幅度增大流量的通过率;但是由于这个时候 load 仍然很高,通过率的恢复仍然不高。

TCP BBR 的思想给了我们一个很大的启发。我们应该根据系统能够处理的请求,和允许进来的请求,来做平衡,而不是根据一个间接的指标(系统 load)来做限流。最终我们追求的目标是 在系统不被拖垮的情况下,提高系统的吞吐率,而不是 load 一定要到低于某个阈值。如果我们还是按照固有的思维,超过特定的 load 就禁止流量进入,系统 load 恢复就放开流量,这样做的结果是无论我们怎么调参数,调比例,都是按照果来调节因,都无法取得良好的效果。
所以,Sentinel 在系统自适应限流的做法是,用 load1 作为启动控制流量的值,而允许通过的流量由处理请求的能力,即请求的响应时间以及当前系统正在处理的请求速率来决定。

4.支持规则

Sentinel 是从单台机器的总体 Load、RT、入口 QPS 和线程数四个维度监控应用数据,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性。

系统保护规则是应用整体维度的,而不是资源维度的,并且仅对入口流量生效。入口流量指的是进入应用的流量(EntryType.IN),比如 Web 服务或 Dubbo 服务端接收的请求,都属于入口流量。

注意:系统规则只对入口流量起作用(调用类型为 EntryType.IN),对出口流量无效。可通过 SphU.entry(res, entryType) 指定调用类型,如果不指定,默认是 EntryType.OUT。

Sentinel 支持以下的阈值规则:

  • Load(仅对 Linux/Unix-like 机器生效):当系统 load1 超过阈值,且系统当前的并发线程数超过系统容量时才会触发系统保护。系统容量由系统的 maxQps * minRt 计算得出。设定参考值一般是 CPU cores * 2.5。
  • CPU usage(1.5.0+ 版本):当系统 CPU 使用率超过阈值即触发系统保护(取值范围 0.0-1.0)。
  • RT:当单台机器上所有入口流量的平均 RT 达到阈值即触发系统保护,单位是毫秒。
  • 线程数:当单台机器上所有入口流量的并发线程数达到阈值即触发系统保护。
  • 入口 QPS:当单台机器上所有入口流量的 QPS 达到阈值即触发系统保护。

5.设置自适应限流

在 Sentinel 中,可以通过系统规则 -> 新增系统规则,设置阈值以实现自适应限流功能,如下图所示:
image.png

6.原理分析

先用经典图来镇楼:

我们把系统处理请求的过程想象为一个水管,到来的请求是往这个水管灌水,当系统处理顺畅的时候,请求不需要排队,直接从水管中穿过,这个请求的RT是最短的;反之,当请求堆积的时候,那么处理请求的时间则会变为:排队时间 + 最短处理时间。

推论一:如果我们能够保证水管里的水量,能够让水顺畅的流动,则不会增加排队的请求;也就是说,这个时候的系统负载不会进一步恶化。

我们用 T 来表示(水管内部的水量),用 RT 来表示请求的处理时间,用P来表示进来的请求数,那么一个请求从进入水管道到从水管出来,这个水管会存在 P * RT 个请求。换一句话来说,当 T ≈ QPS * Avg(RT) 的时候,我们可以认为系统的处理能力和允许进入的请求个数达到了平衡,系统的负载不会进一步恶化。

接下来的问题是,水管的水位是可以达到了一个平衡点,但是这个平衡点只能保证水管的水位不再继续增高,但是还面临一个问题,就是在达到平衡点之前,这个水管里已经堆积了多少水。如果之前水管的水已经在一个量级了,那么这个时候系统允许通过的水量可能只能缓慢通过,RT 会大,之前堆积在水管里的水会滞留;反之,如果之前的水管水位偏低,那么又会浪费了系统的处理能力。

推论二:当保持入口的流量使水管出来的流量达到最大值的时候,可以最大利用水管的处理能力。

然而,和 TCP BBR 的不一样的地方在于,还需要用一个系统负载的值(load1)来激发这套机制启动。

注:这种系统自适应算法对于低 load 的请求,它的效果是一个“兜底”的角色。对于不是应用本身造成的 load 高的情况(如其它进程导致的不稳定的情况),效果不明显。

7.实现代码

以 Sentinel 官方提供的自适应限流代码为例,我们可以再来了解一下它的具体使用:

/*
 * Copyright 1999-2018 Alibaba Group Holding Ltd.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.alibaba.csp.sentinel.demo.system;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

import com.alibaba.csp.sentinel.util.TimeUtil;
import com.alibaba.csp.sentinel.Entry;
import com.alibaba.csp.sentinel.EntryType;
import com.alibaba.csp.sentinel.SphU;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import com.alibaba.csp.sentinel.slots.system.SystemRule;
import com.alibaba.csp.sentinel.slots.system.SystemRuleManager;

/**
 * @author jialiang.linjl
 */
public class SystemGuardDemo {
   
   

    private static AtomicInteger pass = new AtomicInteger();
    private static AtomicInteger block = new AtomicInteger();
    private static AtomicInteger total = new AtomicInteger();

    private static volatile boolean stop = false;
    private static final int threadCount = 100;

    private static int seconds = 60 + 40;

    public static void main(String[] args) throws Exception {
   
   

        tick();
        initSystemRule();

        for (int i = 0; i < threadCount; i++) {
   
   
            Thread entryThread = new Thread(new Runnable() {
   
   
                @Override
                public void run() {
   
   
                    while (true) {
   
   
                        Entry entry = null;
                        try {
   
   
                            entry = SphU.entry("methodA", EntryType.IN);
                            pass.incrementAndGet();
                            try {
   
   
                                TimeUnit.MILLISECONDS.sleep(20);
                            } catch (InterruptedException e) {
   
   
                                // ignore
                            }
                        } catch (BlockException e1) {
   
   
                            block.incrementAndGet();
                            try {
   
   
                                TimeUnit.MILLISECONDS.sleep(20);
                            } catch (InterruptedException e) {
   
   
                                // ignore
                            }
                        } catch (Exception e2) {
   
   
                            // biz exception
                        } finally {
   
   
                            total.incrementAndGet();
                            if (entry != null) {
   
   
                                entry.exit();
                            }
                        }
                    }
                }

            });
            entryThread.setName("working-thread");
            entryThread.start();
        }
    }

    private static void initSystemRule() {
   
   
        SystemRule rule = new SystemRule();
        // max load is 3
        rule.setHighestSystemLoad(3.0);
        // max cpu usage is 60%
        rule.setHighestCpuUsage(0.6);
        // max avg rt of all request is 10 ms
        rule.setAvgRt(10);
        // max total qps is 20
        rule.setQps(20);
        // max parallel working thread is 10
        rule.setMaxThread(10);

        SystemRuleManager.loadRules(Collections.singletonList(rule));
    }

    private static void tick() {
   
   
        Thread timer = new Thread(new TimerTask());
        timer.setName("sentinel-timer-task");
        timer.start();
    }

    static class TimerTask implements Runnable {
   
   
        @Override
        public void run() {
   
   
            System.out.println("begin to statistic!!!");
            long oldTotal = 0;
            long oldPass = 0;
            long oldBlock = 0;
            while (!stop) {
   
   
                try {
   
   
                    TimeUnit.SECONDS.sleep(1);
                } catch (InterruptedException e) {
   
   
                }
                long globalTotal = total.get();
                long oneSecondTotal = globalTotal - oldTotal;
                oldTotal = globalTotal;

                long globalPass = pass.get();
                long oneSecondPass = globalPass - oldPass;
                oldPass = globalPass;

                long globalBlock = block.get();
                long oneSecondBlock = globalBlock - oldBlock;
                oldBlock = globalBlock;

                System.out.println(seconds + ", " + TimeUtil.currentTimeMillis() + ", total:"
                    + oneSecondTotal + ", pass:"
                    + oneSecondPass + ", block:" + oneSecondBlock);
                if (seconds-- <= 0) {
   
   
                    stop = true;
                }
            }
            System.exit(0);
        }
    }
}

课后思考

Nginx 是如何实现限流的?它支持自适应限流吗?

本文已收录到我的面试小站 www.javacn.site,其中包含的内容有:Redis、JVM、并发、并发、MySQL、Spring、Spring MVC、Spring Boot、Spring Cloud、MyBatis、设计模式、消息队列等模块。

相关文章
|
18天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
24天前
|
消息中间件 存储 canal
阿里面试:canal+MQ,会有乱序的问题吗?
本文详细探讨了在阿里面试中常见的问题——“canal+MQ,会有乱序的问题吗?”以及如何保证RocketMQ消息有序。文章首先介绍了消息有序的基本概念,包括全局有序和局部有序,并分析了RocketMQ中实现消息有序的方法。接着,针对canal+MQ的场景,讨论了如何通过配置`canal.mq.partitionsNum`和`canal.mq.partitionHash`来保证数据同步的有序性。最后,提供了多个与MQ相关的面试题及解决方案,帮助读者更好地准备面试,提升技术水平。
阿里面试:canal+MQ,会有乱序的问题吗?
|
20天前
|
消息中间件 架构师 Java
阿里面试:秒杀的分布式事务, 是如何设计的?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试阿里、滴滴、极兔等一线互联网企业时,遇到了许多关于分布式事务的重要面试题。为了帮助大家更好地应对这些面试题,尼恩进行了系统化的梳理,详细介绍了Seata和RocketMQ事务消息的结合,以及如何实现强弱结合型事务。文章还提供了分布式事务的标准面试答案,并推荐了《尼恩Java面试宝典PDF》等资源,帮助大家在面试中脱颖而出。
|
24天前
|
SQL 关系型数据库 MySQL
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
尼恩,一位40岁的资深架构师,通过其丰富的经验和深厚的技術功底,为众多读者提供了宝贵的面试指导和技术分享。在他的读者交流群中,许多小伙伴获得了来自一线互联网企业的面试机会,并成功应对了诸如事务ACID特性实现、MVCC等相关面试题。尼恩特别整理了这些常见面试题的系统化解答,形成了《MVCC 学习圣经:一次穿透MYSQL MVCC》PDF文档,旨在帮助大家在面试中展示出扎实的技术功底,提高面试成功率。此外,他还编写了《尼恩Java面试宝典》等资料,涵盖了大量面试题和答案,帮助读者全面提升技术面试的表现。这些资料不仅内容详实,而且持续更新,是求职者备战技术面试的宝贵资源。
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
|
24天前
|
Kubernetes 架构师 算法
阿里面试:全国14亿人,统计出重名最多的前100个姓名
文章介绍了如何解决“从全国14亿人的数据中统计出重名人数最多的前100位姓名”的面试题,详细分析了多种数据结构的优缺点,最终推荐使用前缀树(Trie)+小顶堆的组合。文章还提供了具体的Java代码实现,并讨论了在内存受限情况下的解决方案,强调了TOP N问题的典型解题思路。最后,鼓励读者通过系统化学习《尼恩Java面试宝典》提升面试技巧。
阿里面试:全国14亿人,统计出重名最多的前100个姓名
|
30天前
|
存储 缓存 NoSQL
阿里面试题:缓存的一些常见的坑,你遇到过哪些,怎么解决的?
阿里面试题:缓存的一些常见的坑,你遇到过哪些,怎么解决的?
|
24天前
|
存储 Kubernetes 架构师
阿里面试:JVM 锁内存 是怎么变化的? JVM 锁的膨胀过程 ?
尼恩,一位经验丰富的40岁老架构师,通过其读者交流群分享了一系列关于JVM锁的深度解析,包括偏向锁、轻量级锁、自旋锁和重量级锁的概念、内存结构变化及锁膨胀流程。这些内容不仅帮助群内的小伙伴们顺利通过了多家一线互联网企业的面试,还整理成了《尼恩Java面试宝典》等技术资料,助力更多开发者提升技术水平,实现职业逆袭。尼恩强调,掌握这些核心知识点不仅能提高面试成功率,还能在实际工作中更好地应对高并发场景下的性能优化问题。
|
2月前
|
缓存 监控 NoSQL
阿里面试让聊一聊Redis 的内存淘汰(驱逐)策略
大家好,我是 V 哥。粉丝小 A 面试阿里时被问到 Redis 的内存淘汰策略问题,特此整理了一份详细笔记供参考。Redis 的内存淘汰策略决定了在内存达到上限时如何移除数据。希望这份笔记对你有所帮助!欢迎关注“威哥爱编程”,一起学习与成长。
|
3月前
|
JavaScript
给原始数据类型加属性和方法为什么不会报错?包装类——阿里面试题
给原始数据类型加属性和方法为什么不会报错?包装类——阿里面试题
|
4月前
|
消息中间件 前端开发 NoSQL
阿里面试:说说@Async实现原理?
阿里面试:说说@Async实现原理?
38 0
下一篇
无影云桌面