基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真

简介: 该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于YOLOv2深度学习网络模型的鱼眼镜头中人员检测算法结合了YOLOv2的高效目标检测能力和对鱼眼镜头畸变的校正处理,以实现对鱼眼图像中人员的准确识别。YOLOv2(You Only Look Once Version 2)由Joseph Redmon等人提出,它在YOLOv1的基础上进行了多项改进,包括引入了批量归一化、高分辨率分类器、多尺度预测、以及使用了新的网络结构Darknet-19。YOLOv2的核心思想是将图像划分为S×S的网格,每个网格预测B个边界框(bounding boxes),以及这些框内物体的类别概率和置信度。

   鱼眼镜头产生的图像畸变主要是桶形畸变,可通过多项式模型进行校正。最常用的校正模型是Brown-Conrady模型,其畸变系数为k1,k2,k3(径向畸变)和p1,p2(切向畸变)。

   在鱼眼镜头环境下应用YOLOv2,首先需要对原始图像进行畸变校正,消除桶形畸变。然后,使用校正后的图像作为输入,通过YOLOv2网络进行目标检测。

预处理:包括图像缩放、归一化等,确保输入符合网络要求。
网络前向传播:输入图像经过一系列卷积层、批量归一化层、激活函数层等,最终产生特征图,每个特征图的每个单元对应原图中的一个网格。
边界框预测与分类:每个网格预测多个边界框及其对应的类别概率和置信度。
后处理:非极大值抑制(Non-Maximum Suppression, NMS)用于去除重叠的预测框,仅保留置信度最高的预测结果。
对于鱼眼镜头的特定场景,可能需要对YOLOv2网络进行微调,以适应畸变校正后图像的特点。这包括调整网络结构(如增加或减少某些层)、修改损失函数的权重参数、以及对网络进行针对性训练,使用包含大量鱼眼镜头下人员样本的数据集。

4.部分核心程序
```load yolov2.mat% 加载训练好的目标检测器
img_size= [448,448];
imgPath = 'test/'; % 图像库路径
cnt = 0;

for i = 1:12 % 遍历结构体就可以一一处理图片了
i

figure

img = imread([imgPath [num2str(i),'.jpg']]); %读取每张图片 
I               = imresize(img,img_size(1:2));
[bboxes,scores] = detect(detector,I,'Threshold',0.48);



if ~isempty(bboxes) % 如果检测到目标
    idx = [];
    I = insertObjectAnnotation(I,'rectangle',bboxes,scores,FontSize=8);% 在图像上绘制检测结果
end

imshow(I, []);  % 显示带有检测结果的图像

pause(0.01);% 等待一小段时间,使图像显示更流畅
if cnt==1
   cnt=0;
end

end

```

相关文章
|
3天前
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
32 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
|
3天前
|
机器学习/深度学习 文件存储 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
40 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
|
3天前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
30 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
3天前
|
机器学习/深度学习 移动开发 测试技术
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
25 13
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
|
23天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
23天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
121 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
191 80
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。