【PolarDB开源】深入PolarDB内核:探究存储计算分离架构的设计哲学

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 【5月更文挑战第20天】PolarDB是阿里巴巴的云原生分布式数据库,以其存储计算分离架构为核心,解决了传统数据库的扩展性和资源灵活性问题。该架构将数据存储和计算处理分开,实现高性能(通过RDMA加速数据传输)、高可用性(多副本冗余保证数据可靠性)和灵活扩展(计算资源独立扩展)。通过动态添加计算节点以应对业务流量变化,PolarDB展示了其在云时代应对复杂业务场景的能力。随着开源项目的进展,PolarDB将持续推动数据库技术发展。

在数据库技术的长河中,架构的演进始终伴随着业务需求和技术突破的双重驱动。PolarDB,作为阿里巴巴自主研发的新一代云原生分布式数据库,其核心设计理念——存储计算分离架构,无疑是其在大数据时代脱颖而出的关键。本文将深入PolarDB内核,探讨这一设计哲学背后的奥秘,揭示其如何在保证高性能、高可用性和可扩展性的同时,降低了运维复杂度。

存储计算分离架构概览

传统数据库系统中,存储和计算通常紧密结合在同一台服务器上。随着数据量的增长和业务需求的多样化,这种架构逐渐暴露出扩展性差、资源分配不灵活等问题。PolarDB创新性地引入了存储计算分离架构,将数据存储层与计算处理层分离,各司其职,灵活扩展。

  • 存储层:集中存放数据块,采用分布式文件系统,支持多副本冗余,确保数据高可靠性和高可用性。
  • 计算层:运行数据库引擎,处理SQL查询、事务管理等计算任务,可以根据业务需求独立扩展。

设计哲学剖析

高性能

存储计算分离架构使得计算节点能够专注于处理业务逻辑,而存储层则通过优化的数据布局和高效的I/O调度,提升数据读写速度。此外,PolarDB采用了基于RDMA(远程直接内存访问)的高速网络通信,极大减少了数据传输延迟,保障了跨节点数据访问的高性能。

高可用性

存储层的多副本设计确保了数据的持久性和可用性。即使单点故障发生,也能迅速通过其他副本接管服务,保证业务连续性。计算层的无状态设计允许快速故障转移,进一步增强了系统的整体韧性。

灵活扩展

得益于分离架构,计算资源和存储资源可以根据实际需求独立扩展。当业务量增长时,仅需增加计算节点即可提升处理能力,无需对存储进行同等比例扩容,有效控制成本。

实践案例:动态扩展

下面通过一个简化的示例,展示如何在PolarDB中动态添加计算节点,以应对业务高峰期的流量激增。

操作步骤

  1. 准备新节点:确保新服务器已安装好Docker环境,并配置好网络连接。
  2. 加入集群:执行类似以下的Docker命令,将新计算节点加入现有集群。注意替换相应参数。
docker run -d --name polar_node_new --net=host \
  -v /etc/localtime:/etc/localtime:ro \
  -v /your/data/path:/data \
  -e PD_ENDPOINTS=CONTROL_NODE_IP:2379 \
  -e NODE_ID=NEW_NODE_ID \
  apsaradb/polardb:latest tidb-server
  1. 验证状态:通过控制节点上的管理工具检查新节点是否已成功加入并正常工作。

总结

PolarDB的存储计算分离架构不仅是一种技术创新,更是对未来数据库发展趋势的深刻洞察。它解决了传统数据库在扩展性、性能和可用性方面面临的挑战,为云原生时代的企业级应用提供了强大的数据处理能力。通过深入理解这一设计哲学,开发者和运维人员可以更好地利用PolarDB,构建出适应复杂业务场景的高性能数据库系统。

随着PolarDB开源项目的不断成熟,更多关于其内核优化、最佳实践和生态建设的探索将持续展开,共同推动数据库技术迈向新的高度。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
4月前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
2月前
|
关系型数据库 分布式数据库 PolarDB
参与有礼|开源PolarDB文档捉虫
2024年9月,开源PolarDB-PG发布兼容PostgreSQL 15版本,为提升用户体验,特举办“开源文档捉虫”活动,邀请您反馈文档问题和优化建议。活动时间为2024年11月1日至2025年2月28日。参与即有机会赢取PolarDB开源社区T恤、新春茶碗及福字版印礼盒等丰富奖品。更多详情及反馈入口请点击链接。
参与有礼|开源PolarDB文档捉虫
|
2月前
|
数据库
|
3月前
|
存储 关系型数据库 分布式数据库
使用开源PolarDB和imgsmlr进行高效的图片存储和相似度搜索
使用开源PolarDB和imgsmlr进行高效的图片存储和相似度搜索
|
3月前
|
SQL JSON 关系型数据库
MySQL是一个广泛使用的开源关系型数据库管理系统,它有许多不同的版本
【10月更文挑战第3天】MySQL是一个广泛使用的开源关系型数据库管理系统,它有许多不同的版本
255 5
|
3月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
3月前
|
关系型数据库 分布式数据库 数据库
PolarDB 开源:推动数据库技术新变革
在数字化时代,数据成为核心资产,数据库的性能和可靠性至关重要。阿里云的PolarDB作为新一代云原生数据库,凭借卓越性能和创新技术脱颖而出。其开源不仅让开发者深入了解内部架构,还促进了数据库生态共建,提升了稳定性与可靠性。PolarDB采用云原生架构,支持快速弹性扩展和高并发访问,具备强大的事务处理能力及数据一致性保证,并且与多种应用无缝兼容。开源PolarDB为国内数据库产业注入新活力,打破国外垄断,推动国产数据库崛起,降低企业成本与风险。未来,PolarDB将在生态建设中持续壮大,助力企业数字化转型。
147 2
|
4月前
|
边缘计算 5G SDN
控制与用户平面分离 (CUPS): 5G 网络架构的革命性变革
控制与用户平面分离 (CUPS): 5G 网络架构的革命性变革
157 1
|
4月前
|
关系型数据库 MySQL 分布式数据库
PolarDB开源社区动态:最新版本功能亮点与更新解读
【9月更文挑战第6天】随着云计算技术的发展,分布式数据库系统成为企业数据处理的核心。阿里云的云原生数据库PolarDB自开源以来备受关注,近日发布的最新版本在内核稳定性、性能、分布式CDC架构及基于时间点的恢复等方面均有显著提升,并新增了MySQL一键导入功能。本文将解读这些新特性并提供示例代码,帮助企业更好地利用PolarDB处理实时数据同步和离线分析任务,提升数据安全性。未来,PolarDB将继续创新,为企业提供更高效的数据处理服务。
284 4
|
4月前
惊世骇俗!开源 PolarDB-X 部署安装大冒险,全程心跳与惊喜不断!
【9月更文挑战第8天】作为技术爱好者的我,近期成功完成了开源 PolarDB-X 的部署安装。尽管过程中遇到不少挑战,但通过精心准备环境、下载安装包、配置参数及启动服务等步骤,最终顺利实现部署。本文将详细介绍部署全过程及可能遇到的问题,为您的 PolarDB-X 探索之旅提供参考与启发,希望能让大家在技术海洋里畅游得更加顺利!
208 2

相关产品

  • 云原生数据库 PolarDB