Jmeter--控制器--详解(1),技术协会Python部面试

简介: Jmeter--控制器--详解(1),技术协会Python部面试

正文

case’e’:
case’f’:
value=(value <<4)+10+aChar-‘a’;
break;
case’A’:
case’B’:
case’C’:
case’D’:
case’E’:
case’F’:
value=(value <<4)+10+aChar-‘A’;
break;
default:
throw new IllegalArgumentException(
“Malformed \uxxxx encoding.”);}}
outBuffer.append((char) value);}else{
if(aChar==‘t’)
aChar=‘\t’;
else if(aChar==‘r’)
aChar=‘\r’;
else if(aChar==‘n’)
aChar=‘\n’;
else if(aChar==‘f’)
aChar=‘\f’;
outBuffer.append(aChar);}}else
outBuffer.append(aChar);}
prev.setResponseData(outBuffer.toString());

废话就到这,接下来我们提取其中的city对应的值:线程组》》添加》》后置处理器》》正则表达式提取

根据你的请求来,这里值得注意的是正则表达会根据你响应的内容不同而提取不到内容,这里指定提取city对应的值深圳。各有用处,如果你想根据不同的响应内容提取不同的城市请查阅本篇:Jmeter–【作为测试你必须知道】高级应用–断言、变量的使用+报告输出_清欢无别事-CSDN博客_jmeter断言中使用变量

这里在正则在接下的讲解中会起到一定的作用。正则解析:

():括起来的部分就是要提取的。

.:匹配任何字符串。

+:一次或多次。

?:不要太贪婪,在找到第一个匹配项后停止。

而我此处的city之前的值就是告诉它去这个指定的值往后的值,直到,结束,这期间取到的值就是“深圳”了。

模板:用KaTeX parse error: Can't use function '′inmathmodeatposition28:…式中有多个正则表达式,则可以是' in math mode at position 28: …式中有多个正则表达式,则可以是̲23$等等,表示解析到的第几个值给token。如:1 11表示解析到的第1个值。

匹配数字:0代表随机取值,1代表全部取值,通常情况下填0

那么问题来了我怎么看到提取的值呢,我们有一个Java请求可以帮到我们:线程组》》添加》》取样器》》Java请求

这里的${}写法是固定的,里面写入我们的引用名称即可。这样跑一次就能得到我们的提取值

事务控制器

=====

什么是事务控制器,将一系列的事务统计起来为一个事务进行展示,说起来有点抽象,上操作你就明白了。线程组》》添加》》逻辑控制》》事务控制器

这里有两个选项,Include duration of timer and pre-post processors in generated sample在一般情况下不勾选。勾选后,在生成的样本中包括计时器,预处理和后处理延迟,会把额外的时间算进来,增加干扰。

先不勾选第一项,我们看看聚合报告:

这里会把各项事务都计入其中,后续接口的过程中,事务多起来就不好看数据了,所以我们勾选Generate parent sample:

这里名称不一样是因为我更改了名称。这里看是不是就是展示了一个事务呢还是非常方便的。

循环控制器

=====

可以看到线程组里面其实是有循环的,但是这个循环是一个大循环,我们的循环控制器是一个小循环,可以单独设置循环次数。这里循环次数我设置了5次,截图就没有放出来了。线程组》》添加》》逻辑控制》》循环控制器

这里我新增一个请求,查看上海的空气质量,看看聚合报告:

这里小妙招就是你可以把事务控制器放入循环中。这个具体用途看场景。

仅一次控制器

======

通常用来存放登录的事务。登录一次后即可操作系统。而不用每次都要登录。这个就看各位脑洞了,在里面添加json提取器啥的结合循环控制室,事务控制器使用。线程组》》添加》》逻辑控制》》仅一性控制器

我将线程组中的循环设置成5次,线程数设置成1。将另外两个控制器禁用,这里看个人好吧,也可不禁用。

实际上它只会跑一次,所以叫仅一次。这里不妨可以想想,是不是可以提取值出来用于下一次的登录什么的使用,下一篇会讲到,参数化。

吞吐量控制器

======

吞吐量控制器可按照比例和数量进行分配,混合压测的时候便于进一步控制比例。看看实例。线程组》》添加》》逻辑控制》》吞吐量控制器

同一个线程组里, 有10个并发, 7个做A业务, 3个做B业务,要模拟这种场景,可以通过吞吐量模拟器来实现.

这里添加了两个吞吐量控制器,线程组》》10个线程数,循环5次,也就是50次,准备时长不变为1S。两个吞吐量控制器比例是60:40,换算也就是3:2。

这里还是可以看到的,样本比这里的比例是30:20,也就是3:2。

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试宝典

简历模板


相关文章
|
20天前
|
数据可视化 图形学 Python
在圆的外面画一个正方形:Python实现与技术解析
本文介绍了如何使用Python的`matplotlib`库绘制一个圆,并在其外部绘制一个正方形。通过计算正方形的边长和顶点坐标,实现了圆和正方形的精确对齐。代码示例详细展示了绘制过程,适合初学者学习和实践。
35 9
|
15天前
|
数据可视化 数据处理 Python
Python编程中的数据可视化技术
在Python编程中,数据可视化是一项强大的工具,它能够将复杂的数据集转化为易于理解的图形。本文将介绍如何使用matplotlib和pandas这两个流行的Python库来实现数据可视化,并展示一些实用的代码示例。通过这些示例,读者将学会如何创建各种图表,包括折线图、柱状图和散点图等,以便更好地理解和呈现数据。
|
22天前
|
存储 数据挖掘 数据处理
Python中的计票技术
本文介绍了如何使用 Python 进行计票,包括使用字典、`collections.Counter` 和 `pandas` 等方法。通过多个示例详细展示了每种方法的具体应用,帮助读者掌握计票技巧。
27 1
|
24天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
71 2
|
1月前
|
算法 Python
Python图论探索:从理论到实践,DFS与BFS遍历技巧让你秒变技术大牛
图论在数据结构与算法中占据重要地位,应用广泛。本文通过Python代码实现深度优先搜索(DFS)和广度优先搜索(BFS),帮助读者掌握图的遍历技巧。DFS沿路径深入搜索,BFS逐层向外扩展,两者各具优势。掌握这些技巧,为解决复杂问题打下坚实基础。
35 2
|
1月前
|
开发框架 开发者 Python
探索Python中的装饰器:技术感悟与实践
【10月更文挑战第31天】 在编程世界中,装饰器是Python中一种强大的工具,它允许我们在不修改函数代码的情况下增强函数的功能。本文将通过浅显易懂的方式,带你了解装饰器的概念、实现原理及其在实际开发中的应用。我们将一起探索如何利用装饰器简化代码、提高可读性和复用性,同时也会分享一些个人的技术感悟,帮助你更好地掌握这项技术。
33 2
|
1月前
|
测试技术 持续交付 Apache
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
55 3
|
1月前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
47 1
|
14天前
|
数据采集 API 定位技术
Python技术进阶:动态代理IP的跨境电商解决方案
Python技术进阶:动态代理IP的跨境电商解决方案
|
21天前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
59 0