实时计算 Flink版产品使用合集之在处理Kafka实时同步时,遇到反压的情况,该怎么办

简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDCSQL jdbc 输出 不支持overwrite 咋办,有处理过这个问题吗?


Flink CDCSQL jdbc 输出 不支持overwrite 咋办,有处理过这个问题吗?


参考回答:

对于Flink CDC SQL jdbc输出不支持overwrite的问题,这是因为JD对于Flink CDC SQL jdbc输出不支持overwrite的问题,这是因为JDBC connector本身不支持INSERT OVERWRITE的操作。目前,在Flink SQL中,只有Filesystem connector和Hive table支持INSERT OVERWRITE,因为这些表一般不会有主键。而其他的connector,如JDBC、ES、HBase等,暂时并不支持INSERT OVERWRITE。

不过,你可以尝试使用upsert插入的方法作为替代。所谓的upsert插入,就是在connector表上定义了主键(PK),然后根据主键的结果进行更新。对于数据库类的系统来说,这种方法应该可以满足业务需求。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567844


问题二:Flink CDC把主表先全量同步到索引中 更新到索引中 这种怎么搞?


Flink CDC把主表先全量同步到索引中 然后全量同步完后再去读主表关联的从表 更新到索引中

这种怎么搞?


参考回答:

要实现Flink CDC将主表全量同步到索引中,然后再全量同步完后再去读主表关联的从表并更新到索引中,可以按照以下步骤进行操作:

  1. 配置Flink CDC连接主表和从表的数据库。确保Flink CDC可以访问和读取这两个表的数据。
  2. 使用Flink CDC的debezium-tabledebezium-kafka组件来创建一个读取主表的流式任务。这个任务将负责从主表中读取数据,并将其转换为Flink可以处理的格式。
  3. 在Flink流式任务中,使用TableSource将主表的数据读取到Flink中。你可以使用TableSource的构造函数来指定主表的连接参数和查询语句。
  4. 在Flink流式任务中,对从表的数据进行处理。可以使用TableSink将数据写入到目标索引中。你可以使用TableSink的构造函数来指定目标索引的连接参数和写入操作的相关参数。
  5. 配置Flink CDC读取从表的流式任务。与读取主表的任务类似,你需要使用debezium-tabledebezium-kafka组件来创建一个读取从表的流式任务。确保这个任务可以访问和读取从表的数据。
  6. 在读取从表的流式任务中,使用TableSource将从表的数据读取到Flink中。与读取主表的任务类似,你可以使用TableSource的构造函数来指定从表的连接参数和查询语句。
  7. 在读取从表的流式任务中,对数据进行处理并更新到目标索引中。你可以使用TableSink将数据写入到目标索引中。
  8. 启动Flink CDC的流式任务并开始读取数据。确保主表和从表的流式任务都已启动并开始读取数据。

需要注意的是,上述步骤中的具体实现可能会因你的业务需求、数据库类型和索引类型等因素而有所不同。因此,在实际操作中,你可能需要根据自己的情况进行适当的调整和修改。同时,为了确保数据的准确性和完整性,建议在全量同步和更新索引的过程中进行适当的校验和监控。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567414


问题三:Flink CDC集群开启checkpoint的配置 是这个嘛?


Flink CDC集群开启checkpoint的配置 checkpointing.enabled: true 是这个嘛?


参考回答:

是的,您需要启用checkpointing以使用Flink的检查点机制。这可以通过在应用程序主类中调用enableCheckpointing方法或在flink-conf.yaml文件中进行配置来启用。此外,为了确保Flink应用程序状态的可靠性和容错性,您还需要配置并发检查点数。这个可以通过设置execution.checkpointing.concurrent-checkpoints参数来完成。

在Flink CDC作业提交后,它将会扫描指定的MySQL表,并在此期间进行checkpoint。因此,您还需要根据情况配置checkpoint的重试策略和重试次数。总的来说,通过适当配置checkpoint间隔,可以实现更精确的故障恢复和提高容错性。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567412


问题四:Flink CDC我这样是不是把flink依赖的包都一起打包了?


Flink CDC我这样是不是把flink依赖的包都一起打包了,集群Lib目录下还要保留自带的jar包么,一直各种jar冲突?


参考回答:

如果您已经将Flink CDC的依赖包都打包在一起,并且将它们部署到了Flink集群中,那么在集群的Lib目录下可能不需要保留自带的jar包。

在Flink集群中,Lib目录下的jar包是Flink自带的依赖包,用于支持Flink的流处理和批处理等操作。如果您已经将Flink CDC的依赖包打包并部署到集群中,那么这些依赖包应该已经包含了所需的jar包,因此不需要在Lib目录下保留自带的jar包。

然而,如果您的应用程序还有其他依赖包,并且这些依赖包与Flink自带的依赖包存在冲突,那么您可能需要采取一些措施来解决冲突。这可能包括:

  1. 排除冲突的依赖项:在您的应用程序中排除与Flink自带依赖包冲突的依赖项。这可以通过在构建文件中添加排除依赖项的语句来实现。
  2. 使用依赖管理工具:使用像Maven或Gradle这样的依赖管理工具来管理您的应用程序的依赖项。这些工具可以帮助您解决依赖项冲突的问题。
  3. 手动解决冲突:如果以上方法无法解决问题,您可以手动解决冲突。这可能需要对您的应用程序和Flink的依赖项进行深入分析,并手动调整它们以避免冲突。

总之,在部署Flink CDC时,您需要确保您的应用程序所需的依赖项已经包含在打包的jar包中,并且已经正确地解决与其他依赖项的冲突问题。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567411


问题五:Flink CDC有遇到过kafka实时同步hudi出现反压的情况吗?


Flink CDC有遇到过kafka实时同步hudi出现反压的情况吗?


参考回答:

Flink CDC在处理Kafka实时同步时,可能会遇到反压(BackPressure)的情况。反压通常发生在系统接收数据的速率远高于它处理数据的速率时,导致数据处理过慢,上游的operator的backpressure升高。

在Flink中,如果一个Task因为反压导致处理速度降低了,它会卡在向LocalBufferPool申请内存块上。Flink的机制能够自检测到被阻塞的Operator,然后自适应地降低源头或上游数据的发送速率,从而维持整个系统的稳定。

因此,当Kafka实时同步Hudi出现反压的情况时,Flink CDC能够自动检测并应对。同时,可以通过增加并发或者其它解决方法来缓解反压问题。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567410

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
消息中间件 存储 传感器
239 0
|
4月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
520 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
6月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
7月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
235 12
|
7月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
565 35
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
|
9月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
986 0
|
11月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
711 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
12月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
559 56

相关产品

  • 实时计算 Flink版