【Java多线程】面试常考 —— JUC(java.util.concurrent) 的常见类

简介: 【Java多线程】面试常考 —— JUC(java.util.concurrent) 的常见类

1、JUC(java.util.concurrent)

这是java中的一个包,存放着多线程编程中常见的一些类。


1.1、Callable 接口


有如下几种:


1、继承 Thread(包含了匿名内部类的方式)


2、实现 Runnable(包含了匿名内部类的方式)


3、基于 lambda 表达式


其实除了以上方式,还有一个方式可以创建线程,即基于 Callable 的创建方法。


 

public static void main(String[] args) throws ExecutionException, InterruptedException {
        Callable<Integer> callable = new Callable<>() {
            @Override
            public Integer call() throws Exception {
                int ret = 0;
                for (int i = 1; i <= 1000; i++) {
                    ret += i;
                }
                return ret;
            }
        };
        //引入 FutureTask 类,作为 Thread 和 callable 的 “粘合剂”
        FutureTask<Integer> futureTask = new FutureTask<>(callable);
        Thread t = new Thread(futureTask);
        t.start();
        //取餐号,使用 futureTask 获取到结果,具有阻塞功能
        System.out.println(futureTask.get());
    }

基于 Callable 同样可以创建线程,那么它与 Runnable 有什么区别呢?


Runnable 关注的是整个过程,不关注执行结果,Runnable 提供的是 run 方法,返回值类型是 void。

Callable 关注的是执行结果,Callable 提供的是 call 方法,返回值就是线程执行任务得到的结果。

因此,如果编写多线程代码时,希望关注线程中代码的返回值时,此时使用基于 Callable 实现的线程更为方便。


1.2、ReentrantLock 可重入锁

与 synchronized 有区别,上古时期的 Java,synchronized 还不够强壮,功能也不够强大,也没有各种优化,当时 ReenactmentLock 就是实现可重入锁的选择。


ReenactmentLock 的用法具有传统锁的风格,上锁使用lock(),解锁使用unlock()。

由于需要手动解锁,触发 return 或者 异常时 容易忘记解锁,为了避免这种问题,正确使用 ReenactmentLock 时需要把 unlock 操作放到 finally 中。


问题:既然有 synchronized,为啥还要用 ReenactmentLock ?(面试题)


1、ReenactmentLock 提供了 tryLock 操作。


lock 尝试进行加锁,如果加锁不成,就会阻塞;

tryLock 尝试进行加锁,如果加锁不成,不阻塞,直接返回 false;(更多的可操作空间)

2、ReenactmentLock 提供了公平锁的实现,通过队列记录加锁线程的先后顺序。


3、搭配的等待通知机制不同。


对于 synchronized,搭配 wait/notify

对于 ReenactmentLock,搭配 Condition 类,功能比 wait/notify 略强一些

1.3、Semaphore 信号量

首先举例说明 semaphore 信息量的概念:停车场入口立着的那个显示屏,每有一辆车进入停车场显示屏就会显示剩余车位减1,每有一辆车从停车场出去,显示屏上显示的剩余车辆就会加1,当显示屏上的剩余车位为0时,停车场入口的栏杆就不会再打开,车辆就无法进入停车场了,直到有一辆车从停车场出去为止。


而这个场景中提及的“显示屏”这个东西,就可以认为是信息量,表示“可用资源的个数”,申请一个可用资源,就会使数字 - 1,这个操作就成为 p 操作,释放一个可用资源,就会使数字 + 1,这个操作就是 v 操作,如果信息量数值为 0,继续 p 操作就会进行阻塞。


信号量是更广义的“锁”。所谓锁,本质上也是一种特殊的信息量,可以把锁认为是计数值为 1 的信息量。释放状态,就是1,加锁状态就是0,对于这种非0即1的信息量,称为“二元信息量”。除此之外,同样 Semaphore 也可以用来实现生产者消费者模型。


acquire() 表示申请资源(P操作);

release() 表示释放资源(V操作);


使用 semaphore 模式锁并使用模拟锁实现两个线程同时对 i 自增 5w 的操作


package thread;
import java.util.concurrent.Semaphore;
public class ThreadDemo38 {
    private static int count = 0;
    public static void main(String[] args) throws InterruptedException {
        //信息量设置为 1
        Semaphore semaphore = new Semaphore(1);
        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 50000; i++) {
                try {
                    semaphore.acquire();
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
                count++;
                semaphore.release();
            }
        });
        Thread t2 = new Thread(() -> {
            for (int i = 0; i < 50000; i++) {
                try {
                    semaphore.acquire();
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
                count++;
                semaphore.release();
            }
        });
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("count = " + count);
    }
}


1.4、CountDownLatch

针对特定场景下解决问题的小工具。作用:同时等待 N 个任务执行结束。


比如,多线程执行一个任务,把大的任务拆分成几个部分,由每个线程分别执行。“多线程下载”:idm,比特彗星。


package thread;
import java.util.Random;
import java.util.concurrent.CountDownLatch;
public class ThreadDemo39 {
    public static void main(String[] args) throws InterruptedException {
        // 1. 此处构造方法中写 10, 意思是有 10 个线程/任务
        CountDownLatch latch = new CountDownLatch(10);
        // 创建出 10 个线程负责下载.
        for (int i = 0; i < 10; i++) {
            int id = i;
            Thread t = new Thread(() -> {
                Random random = new Random();
                // [0, 5)
                int time = (random.nextInt(5) + 1) * 1000;
                System.out.println("线程 " + id + " 开始下载");
                try {
                    Thread.sleep(time);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
                System.out.println("线程 " + id + " 结束下载");
                // 2. 告知 countDownLatch 我执行结束了.
                latch.countDown();
            });
            t.start();
        }
        // 3. 通过这个 await 操作来【等待所有任务结束】. 也就是 countDown 被调用 10 次了.
        latch.await();
        System.out.println("所有任务都已经完成了!");
    }
}


每个任务执行完毕,都调用 latch.countDown()。在 CountDownLatch 内部的计数器同时自减。

主线程中使用 latch.await(); 阻塞等待所有任务执行完毕,相当于计数器为 0 了。


目录
相关文章
|
15天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
45 2
|
3天前
|
Java 程序员
Java社招面试题:& 和 && 的区别,HR的套路险些让我翻车!
小米,29岁程序员,分享了一次面试经历,详细解析了Java中&和&&的区别及应用场景,展示了扎实的基础知识和良好的应变能力,最终成功获得Offer。
26 14
|
20天前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
25天前
|
存储 缓存 Oracle
Java I/O流面试之道
NIO的出现在于提高IO的速度,它相比传统的输入/输出流速度更快。NIO通过管道Channel和缓冲器Buffer来处理数据,可以把管道当成一个矿藏,缓冲器就是矿藏里的卡车。程序通过管道里的缓冲器进行数据交互,而不直接处理数据。程序要么从缓冲器获取数据,要么输入数据到缓冲器。
Java I/O流面试之道
|
18天前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
|
21天前
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
43 4
|
22天前
|
存储 Java 程序员
Java基础的灵魂——Object类方法详解(社招面试不踩坑)
本文介绍了Java中`Object`类的几个重要方法,包括`toString`、`equals`、`hashCode`、`finalize`、`clone`、`getClass`、`notify`和`wait`。这些方法是面试中的常考点,掌握它们有助于理解Java对象的行为和实现多线程编程。作者通过具体示例和应用场景,详细解析了每个方法的作用和重写技巧,帮助读者更好地应对面试和技术开发。
76 4
|
2月前
|
存储 Java 程序员
Java面试加分点!一文读懂HashMap底层实现与扩容机制
本文详细解析了Java中经典的HashMap数据结构,包括其底层实现、扩容机制、put和查找过程、哈希函数以及JDK 1.7与1.8的差异。通过数组、链表和红黑树的组合,HashMap实现了高效的键值对存储与检索。文章还介绍了HashMap在不同版本中的优化,帮助读者更好地理解和应用这一重要工具。
55 5
|
2月前
|
存储 Java
[Java]面试官:你对异常处理了解多少,例如,finally中可以有return吗?
本文介绍了Java中`try...catch...finally`语句的使用细节及返回值问题,并探讨了JDK1.7引入的`try...with...resources`新特性,强调了异常处理机制及资源自动关闭的优势。
23 1
|
1月前
|
算法 Java
JAVA 二叉树面试题
JAVA 二叉树面试题
17 0