基于混合整数规划的微网储能电池容量规划(matlab代码)

简介: 基于混合整数规划的微网储能电池容量规划(matlab代码)

1 主要内容

该程序参考《基于全寿命周期成本的配电网蓄电池储能系统的优化配置》全寿命模型和《含分布式发电的微电网中储能装置容量优化配置_刘舒》容量配置部分,主要内容:解决微网中蓄电池优化配置的问题,其中储能的电池容量未知,在一定的框架下对其进行优化,得出满足经济效益最佳的储能容量配置结果,并且在微网的框架下,给出了不同时段的容量配置结果,还给出了微网购电/售电策略,电池充电/放电策略,以及微网中其他单元的配置结果。该程序可以选择采用MATLAB+GUROBI平台求解或者是MATLAB自行求解,对于未安装gurobi的同学更加友好。

程序难点:

该程序主要是采用紧凑约束形式,如Ax<=b/Aeq*x=beq。这种形式虽然简单,但是理解x具体代表哪些变量还是有些难度。有个窍门是通过x的输出部分来进一步了解,通过反推方式在理解上述公式的难度就大大降低。x结果输出部分代码如下:
Pbuy_interval=x(1:num_of_hours);
Psell_interval=x(num_of_hours+1:2*num_of_hours);
Pbattery_inter_disch=x(2*num_of_hours+1:3*num_of_hours);
Pbattery_inter_charge=x(3*num_of_hours+1:4*num_of_hours);
Px1_interval=x(4*num_of_hours+1:5*num_of_hours);
Px2_interval=x(5*num_of_hours+1:6*num_of_hours);
Py11_interval=x(6*num_of_hours+1:7*num_of_hours);
Py12_interval=x(7*num_of_hours+1:8*num_of_hours);
Py13_interval=x(8*num_of_hours+1:9*num_of_hours);
Py14_interval=x(9*num_of_hours+1:10*num_of_hours);
Py21_interval=x(10*num_of_hours+1:11*num_of_hours);
Py22_interval=x(11*num_of_hours+1:12*num_of_hours);
Py23_interval=x(12*num_of_hours+1:13*num_of_hours);
Py24_interval=x(13*num_of_hours+1:14*num_of_hours);
B1_interval=x(14*num_of_hours+1:15*num_of_hours);
B2_interval=x(15*num_of_hours+1:16*num_of_hours);
B3_interval=x(16*num_of_hours+1:17*num_of_hours);
B4_interval=x(17*num_of_hours+1:18*num_of_hours);
Z1_interval=x(18*num_of_hours+1:19*num_of_hours);
Z2_interval=x(19*num_of_hours+1:20*num_of_hours);
Z3_interval=x(20*num_of_hours+1:21*num_of_hours);
Z4_interval=x(21*num_of_hours+1:22*num_of_hours);


2 部分程序

read_time=toc %send to display the time it took to read the data from the .xlsx file
num_descrit=length(efficiencies);
%end of input data
%% *****************************************************************************    
%prepare the matrixes
icb=initial_capacity_battery;
mincb=minimum_capacity_battery;
maxcb=maximum_capacity_battery;
num_of_hours=length(c);
%1D zero element matrix (time intervals)
zeros_1D=zeros(1,num_of_hours);
%2D zero element matrix (time intervals*time intervals)
zeros_2D=zeros(num_of_hours,num_of_hours);
%Create the positive diagonal matrix with 1.
v = ones(1,num_of_hours);
Diag1_pos = diag(v);
%Create the negative diagonal matrix with -1.
v = ones(1,num_of_hours);
v=v.*-1;
Diag1_neg =diag(v);
%Create the negative diagonal battery efficiency.
Diag_neg_disch_eff=Diag1_neg*battery_effic_disch;  %is not implemented yet
Diag_pos_charge_eff=Diag1_pos*(1/battery_effic_charge);
%Create the  diagonal matrix OF THE first efficiency
v = ones(1,num_of_hours);
v=v.*efficiencies(1);
Diag_eff1_pos =diag(v);
Diag_eff1_neg=-Diag_eff1_pos;
%Create the  diagonal matrix OF THE second efficiency
v = ones(1,num_of_hours);
v=v.*efficiencies(2);
Diag_eff2_pos =diag(v);
Diag_eff2_neg=-Diag_eff2_pos;
%Create the  diagonal matrix OF THE third efficiency
v = ones(1,num_of_hours);
v=v.*efficiencies(3);
Diag_eff3_pos =diag(v);
Diag_eff3_neg=-Diag_eff3_pos;
%Create the  diagonal matrix OF THE fourth efficiency
v = ones(1,num_of_hours);
v=v.*efficiencies(4);
Diag_eff4_pos =diag(v);
Diag_eff4_neg=-Diag_eff4_pos;
%create lower triangular matrix positive and negative
v=tril(ones(num_of_hours,num_of_hours),-1);
pos_triangular=v+Diag1_pos;
neg_triangular=-pos_triangular;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pos_triangular=pos_triangular/4; %for quarter hour
neg_triangular=neg_triangular/4;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Create the  diagonal matrix OF THE bounds efficiency 
v = ones(1,num_of_hours);
v=v.*bounds_efficiency(1);
Diag_bounds_eff1 =diag(v);
%Create the  diagonal matrix OF THE bounds efficiency 
v = ones(1,num_of_hours);
v=v.*bounds_efficiency(2);
Diag_bounds_eff2 =diag(v);
%Create the  diagonal matrix OF THE bounds efficiency 
v = ones(1,num_of_hours);
v=v.*bounds_efficiency(3);
Diag_bounds_eff3 =diag(v);
%Create the  diagonal matrix OF THE bounds efficiency 
v = ones(1,num_of_hours);
v=v.*bounds_efficiency(4);
Diag_bounds_eff4 =diag(v);
%create the upper bound value of y1 and y2
upper_y1=max_batt_discharge+max(PV);
upper_y2=max_batt_charge*(1/battery_effic_charge);
%Create the  diagonal matrix of upper bound value of y1 
v = ones(1,num_of_hours);
v=v.*upper_y1; %very big value for ours values
Diag_upper_pos_y1 =diag(v);
Diag_upper_neg_y1 =-Diag_upper_pos_y1;
%Create the  diagonal matrix of upper bound value of y2 
v = ones(1,num_of_hours);
v=v.*upper_y2; %very big value for ours values
Diag_upper_pos_y2 =diag(v);
Diag_upper_neg_y2 =-Diag_upper_pos_y2;
%% *****************************************************************************    
 %Objective Function
%
 % F=[pgrid_pos pgrid_neg bat PDC y1:y4 B1:B4];
 F=[c k*(-1) zeros(1,num_of_hours*4) zeros(1,num_of_hours*4*num_descrit)];
intcon = 6*num_of_hours+num_of_hours*2*num_descrit+1:length(F); %binary variables
% %BOUNDS
%**********Ina***
PgridMax=inf;%limit the power from grid: INA added to avoid spikes in charging batery
%***********
lb=[zeros(1,2*num_of_hours) zeros(1,2*num_of_hours)  zeros(1,2*num_of_hours)  zeros(1,num_of_hours*4*num_descrit) ];
% ub=[ones(1,2*num_of_hours)*(inf)  ones(1,num_of_hours)*(max_batt_discharge) ones(1,num_of_hours)*(max_batt_charge) ones(1,2*num_of_hours)*(inf) ones(1,num_of_hours*4*num_descrit)*(inf) ];
ub=[ones(1,2*num_of_hours)*(PgridMax)  ones(1,num_of_hours)*(max_batt_discharge) ones(1,num_of_hours)*(max_batt_charge) ones(1,2*num_of_hours)*(PgridMax) ones(1,num_of_hours*4*num_descrit)*(PgridMax) ];
 
 %Equalities Constraints
Aeq=[Diag1_pos,Diag1_neg,zeros_2D,zeros_2D,zeros_2D,Diag1_neg,Diag1_pos,Diag1_pos,Diag1_pos,Diag1_pos,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D;
    zeros_2D,zeros_2D,Diag_neg_disch_eff,Diag_pos_charge_eff,Diag1_pos,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,Diag1_neg,Diag1_neg,Diag1_neg,Diag1_neg,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D ;
    zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,zeros_2D,Diag1_pos,Diag1_pos,Diag1_pos,Diag1_pos,Diag1_pos,Diag1_pos,Diag1_pos,Diag1_pos;
    ];
 beq=[Load,PV,ones(1,num_of_hours)];
 %Inequalities Constraints


3 程序结果

4 下载链接

相关文章
|
3天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
12天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
6月前
|
机器学习/深度学习 算法 安全
m基于Q-Learning强化学习的路线规划和避障策略matlab仿真
MATLAB 2022a仿真实现了Q-Learning算法在路线规划与避障中的应用,展示了智能体在动态环境中学习最优路径的过程。Q-Learning通过学习动作价值函数Q(s,a)来最大化长期奖励,状态s和动作a分别代表智能体的位置和移动方向。核心程序包括迭代选择最优动作、更新Q矩阵及奖励机制(正奖励鼓励向目标移动,负奖励避开障碍,探索奖励平衡探索与利用)。最终,智能体能在复杂环境中找到安全高效的路径,体现了强化学习在自主导航的潜力。
92 0
|
5月前
|
资源调度 SoC
基于UKF无迹卡尔曼滤波的电池Soc估计matlab仿真
**摘要:** 使用MATLAB2022a,基于UKF的电池SOC估计仿真比较真实值,展示非线性滤波在电动车电池管理中的效用。电池电气模型描述电压、电流与SoC的非线性关系,UKF利用无迹变换处理非线性,通过预测和更新步骤实时估计SoC,优化状态估计。尽管UKF有效,但依赖准确模型参数。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
169 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
120 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
86 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
6月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)