JVM工作原理与实战(二十三):堆的垃圾回收-引用计数法和可达性分析法

简介: JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了判断堆上的对象是否可以回收的方法(引用计数法、可达性分析法)、查看垃圾回收日志等内容。

一、判断堆上的对象是否可以回收

在垃圾回收过程中,首要任务是判断哪些对象可以安全地回收。常见的判断方法主要有两种:引用计数法可达性分析法

1.引用计数法

引用计数法是一种直观且简单的垃圾回收策略。每个对象都持有一个引用计数器,当一个对象被引用时,其计数器加1;当引用被解除时,计数器减1。当计数器归0时,对象即被认为是可以回收的。

image.gif

引用计数法的优点在于其实现简单,对于某些特定场景(如C++中的智能指针)非常适用。然而,它也存在一些明显的缺点:

  • 每次引用或取消引用都需要更新计数器,这可能对系统性能产生影响。尤其是在对象引用频繁增减的情况下,这可能导致大量的更新操作,从而影响程序的运行效率。
  • 引用计数法无法处理循环引用的情况。例如,当对象A引用对象B,同时对象B也引用对象A时,即使这两个对象之间没有其他外部引用,它们的引用计数也不会归0,从而导致无法正常回收,造成内存泄漏。

2.可达性分析算法

相比之下,可达性分析算法更为复杂,但它能够解决循环引用问题。在可达性分析中,所有对象被分为两类:垃圾回收的根对象(GC Root)和普通对象。这些根对象通常是程序中可以直接访问的对象。算法通过追踪从根对象到目标对象的引用链,来判断一个对象是否可达。如果一个对象从任何根对象都无法达到,那么这个对象就被认为是不可达的,可以被安全地回收。

案例:

在图中,A对象引用了B对象,B对象又引用了C和D对象,从而形成了一个引用链。可达性分析算法的核心思想在于,如果一个对象无法从垃圾回收的根对象(GC Root)可达,那么这个对象就可以被安全地回收。反之,如果一个对象可以从某个GC Root对象可达,那么这个对象就被认为是活动的,不可被回收。

image.gif

在Java中,就采用了可达性分析算法来判定对象是否可以回收。所有的根对象都存在于线程的栈中或者其他一些固定区域(例如JDK中的强引用、软引用、弱引用、虚引用)。如果一个对象被根对象直接或间接引用,那么这个对象就被认为是活动的、不可被回收的;反之,如果一个对象没有任何根对象引用它,那么这个对象就可以被垃圾回收。

可达性分析算法的主要优点是它可以处理复杂的引用关系和避免循环引用的问题。然而,它也有一些缺点:

  • 可达性分析算法需要追踪和记录所有的引用关系,这可能会增加内存和CPU的使用。
  • 如果一个程序在运行过程中改变了引用关系(例如在Java中的null指针异常),这可能会影响到垃圾回收的结果。
  • 对于一些动态生成的对象或者短生命周期的对象,可达性分析可能无法有效地判定其是否可以回收。

GC Root对象:

在垃圾回收过程中,GC Root对象是指垃圾回收的起始点。这些对象是可达的,并且通过引用关系可以访问到堆上的其他对象。常见的GC Root对象包括:

  • 线程Thread对象:每个线程在Java虚拟机中都有一个对应的Thread对象,这些对象引用线程栈帧中的方法参数、局部变量等,为垃圾回收提供了可达性路径。
  • 系统类加载器加载的java.lang.Class对象:系统类加载器加载的java.lang.Class对象,这些对象引用类中的静态变量。
  • 监视器对象:当一个线程执行同步代码块或同步方法时,会创建一个监视器对象来保存同步锁的信息。
  • 本地方法调用时使用的全局对象:在使用本地方法(native method)时,Java虚拟机可能会创建一些全局对象。

二、查看垃圾回收日志

要获取垃圾回收的详细信息,可以使用-verbose:gc参数。该参数提供了关于垃圾回收操作的详细日志输出。

-verbose:gc

image.gif

通过使用此参数,可以获取有关垃圾回收的详细信息,包括每次垃圾回收的类型、回收前和回收后的内存使用情况等,这些信息对于分析和优化垃圾回收性能非常有用。

image.gif


总结

JVM是Java程序的运行环境,负责字节码解释、内存管理、安全保障、多线程支持、性能监控和跨平台运行。本文主要介绍了判断堆上的对象是否可以回收的方法(引用计数法、可达性分析法)、查看垃圾回收日志等内容,希望对大家有所帮助。

相关文章
|
2月前
|
监控 Java
压力测试Jmeter的简单使用,性能监控-堆内存与垃圾回收 -jvisualvm的使用
这篇文章介绍了如何使用JMeter进行压力测试,包括测试前的配置、测试执行和结果查看。同时,还探讨了性能监控工具jconsole和jvisualvm的使用,特别是jvisualvm,它可以监控内存泄露、跟踪垃圾回收、执行时内存和CPU分析以及线程分析等,文章还提供了使用这些工具的详细步骤和说明。
压力测试Jmeter的简单使用,性能监控-堆内存与垃圾回收 -jvisualvm的使用
|
4天前
|
算法 Java 开发者
Java中的垃圾回收机制:从原理到实践
Java的垃圾回收机制(Garbage Collection, GC)是其语言设计中的一大亮点,它为开发者提供了自动内存管理的功能,大大减少了内存泄漏和指针错误等问题。本文将深入探讨Java GC的工作原理、不同垃圾收集器的种类及它们各自的优缺点,并结合实际案例展示如何调优Java应用的垃圾回收性能,旨在帮助读者更好地理解和有效利用Java的这一特性。
|
26天前
|
监控 算法 Java
深入理解Java中的垃圾回收机制在Java编程中,垃圾回收(Garbage Collection, GC)是一个核心概念,它自动管理内存,帮助开发者避免内存泄漏和溢出问题。本文将探讨Java中的垃圾回收机制,包括其基本原理、不同类型的垃圾收集器以及如何调优垃圾回收性能。通过深入浅出的方式,让读者对Java的垃圾回收有一个全面的认识。
本文详细介绍了Java中的垃圾回收机制,从基本原理到不同类型垃圾收集器的工作原理,再到实际调优策略。通过通俗易懂的语言和条理清晰的解释,帮助读者更好地理解和应用Java的垃圾回收技术,从而编写出更高效、稳定的Java应用程序。
|
7天前
|
存储 Java PHP
【JVM】垃圾回收机制(GC)之引用计数和可达性分析
【JVM】垃圾回收机制(GC)之引用计数和可达性分析
25 0
|
1月前
|
监控 算法 Java
掌握Java的垃圾回收机制:从原理到实践
在Java的世界中,垃圾回收(Garbage Collection,简称GC)是一块神秘的领域,它如同一位默默无闻的清洁工,确保内存中不再使用的对象得到妥善处理。本文将带你走进垃圾回收的大门,探索它的工作原理、常见算法及其在实际应用中的调优策略。无论你是初学者还是有一定经验的开发者,这篇文章都将为你揭开垃圾回收的神秘面纱,让你的Java程序运行得更加高效和稳定。
54 5
|
3月前
|
运维 监控 Java
(十)JVM成神路之线上故障排查、性能监控工具分析及各线上问题排错实战
经过前述九章的JVM知识学习后,咱们对于JVM的整体知识体系已经有了全面的认知。但前面的章节中,更多的是停留在理论上进行阐述,而本章节中则更多的会分析JVM的实战操作。
|
2月前
|
监控 JavaScript Java
JVM源码级别分析G1发生FullGC元凶的是什么
线上系统遭遇频繁Old GC问题,监控显示出现多次“to-space exhausted”日志,这表明垃圾回收过程中因年轻代 Survivor 区或老年代空间不足导致对象晋升失败。通过 JVM 源码分析,此问题源于对象转移至老年代失败时,JVM 无法找到足够的空间存放存活对象。进一步排查发现大对象分配占用了预留空间,加剧了空间不足的情况。使用 JFR 分析工具定位到定期报表序列化导致大量大对象生成,通过改用堆外内存进行序列化输出,最终解决了频繁 Old GC 问题。
|
1月前
|
监控 算法 Java
深入理解Java中的垃圾回收机制(GC)
本文将探讨Java的自动内存管理核心——垃圾回收机制。通过详细解析标记-清除算法、复制算法和标记-整理算法等常用垃圾回收算法,以及CMS、G1等常见垃圾回收器,帮助读者更好地理解Java应用的性能优化和内存管理。同时,探讨分代收集、分区收集等策略在实际项目中的应用。结语部分总结了垃圾回收机制在Java开发中的重要性,并展望了未来可能的发展。
35 0
|
2月前
|
缓存 监控 Java
"Java垃圾回收太耗时?阿里HBase GC优化秘籍大公开,让你的应用性能飙升90%!"
【8月更文挑战第17天】阿里巴巴在HBase实践中成功将Java垃圾回收(GC)时间降低90%。通过选用G1垃圾回收器、精细调整JVM参数(如设置堆大小、目标停顿时间等)、优化代码减少内存分配(如使用对象池和缓存),并利用监控工具分析GC行为,有效缓解了高并发大数据场景下的性能瓶颈,极大提升了系统运行效率。
61 4
|
2月前
|
算法 Java 应用服务中间件
探索JVM垃圾回收算法:选择适合你应用的最佳GC策略
探索JVM垃圾回收算法:选择适合你应用的最佳GC策略