Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

简介: Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

全文链接:http://tecdat.cn/?p=32059

分析师:Eileen


电力系统源源不断向各用户提供持续稳定的电能,本文通过对数据的提取,帮助客户分别对不同客户端日,月,年的用电负荷情况进行分析,并通过模型对单户负荷情况进行预测点击文末“阅读原文”获取完整数据


解决方案


任务/目标

本课题的数据分析对象是电力在2011-2014年的370个客户端的耗电数据,根据预测负荷可以安排发电厂发电机组的启停,降低储备容量的浪费,节约成本。

 

数据源准备


负荷预测是用历史负荷建立模型来预测未来负荷的方法,因此历史数据收集的数量、质量直接决定了负荷预测的准确性。所以在负荷预测前,需要收集大量的历史负荷数据、天气数据等。这些数据由于一些因素可能会造成数据的缺失,需要利用一些方法去填补缺失值,提高负荷预测的精确度。

本项目采用均值填补法,找到所有有缺失值的列,用各列的均值填充缺失值。


数据分析


通过曲线类图像,以特定时间周期所统计的负荷值为纵坐标来画出负荷/时间的关系曲线,呈现负荷的大小及发展趋势。例如年、月、季、天等指标。

 

划分训练集和测试集

对样本集拆分成训练集和测试集

values = reframed.values
n_train_time = 365*24*3
train = values[:n_train_time, :]
test = values[n_train_time:, :]

考虑到最终模型会预测将来的某时间段的销量,为了更真实的测试模型效果,以时间来切分训练集和测试集。具体做法如下:假设我们有2011-2014的客户端耗电数据。以2011 ~ 2013的数据作为训练,以2013 ~ 2014的数据作为测试。


建模


LSTM 模型, 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征,将问题转化为监督学习问题。将特征进行规范化、归一化,进而搭建网络模型、训练网络。

ARIMA 一般应用在股票和电商销量领域

该模型用于使用观察值和滞后观察值的移动平均模型残差间的依赖关系,采用了拟合ARIMA(5,1,0)模型,将自回归的滞后值设为5,使用1的差分阶数使时间序列平稳,使用0的移动平均模型。

在此案例中,运用2种方法预测电力负荷,其可视化图形如下:


ARIMA模型


点击标题查阅往期内容


Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据


01

02

03

04


LSTM模型


可以看出,预测值的趋势已经基本与真实趋势保持一致,但是在预测期较长的区间段,其预测值之间的差别较大。


关于分析师


在此对Eileen对本文所作的贡献表示诚挚感谢,她专注数据处理、数据分析、数据预测领域。擅长Python、数据分析。


相关文章
|
16天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
70 35
|
18天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
167 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
8天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
48 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
21天前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
移动开发 网络协议 Linux
Python网络编程(socketserver、TFTP云盘、HTTPServer服务器模型)
Python网络编程 Python小项目 Python网盘 Python HTTP请求服务端
2160 0
|
网络协议 Python Unix
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。

热门文章

最新文章