Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

简介: Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

全文链接:http://tecdat.cn/?p=32059

分析师:Eileen


电力系统源源不断向各用户提供持续稳定的电能,本文通过对数据的提取,帮助客户分别对不同客户端日,月,年的用电负荷情况进行分析,并通过模型对单户负荷情况进行预测点击文末“阅读原文”获取完整数据


解决方案


任务/目标

本课题的数据分析对象是电力在2011-2014年的370个客户端的耗电数据,根据预测负荷可以安排发电厂发电机组的启停,降低储备容量的浪费,节约成本。

 

数据源准备


负荷预测是用历史负荷建立模型来预测未来负荷的方法,因此历史数据收集的数量、质量直接决定了负荷预测的准确性。所以在负荷预测前,需要收集大量的历史负荷数据、天气数据等。这些数据由于一些因素可能会造成数据的缺失,需要利用一些方法去填补缺失值,提高负荷预测的精确度。

本项目采用均值填补法,找到所有有缺失值的列,用各列的均值填充缺失值。


数据分析


通过曲线类图像,以特定时间周期所统计的负荷值为纵坐标来画出负荷/时间的关系曲线,呈现负荷的大小及发展趋势。例如年、月、季、天等指标。

 

划分训练集和测试集

对样本集拆分成训练集和测试集

values = reframed.values
n_train_time = 365*24*3
train = values[:n_train_time, :]
test = values[n_train_time:, :]

考虑到最终模型会预测将来的某时间段的销量,为了更真实的测试模型效果,以时间来切分训练集和测试集。具体做法如下:假设我们有2011-2014的客户端耗电数据。以2011 ~ 2013的数据作为训练,以2013 ~ 2014的数据作为测试。


建模


LSTM 模型, 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征,将问题转化为监督学习问题。将特征进行规范化、归一化,进而搭建网络模型、训练网络。

ARIMA 一般应用在股票和电商销量领域

该模型用于使用观察值和滞后观察值的移动平均模型残差间的依赖关系,采用了拟合ARIMA(5,1,0)模型,将自回归的滞后值设为5,使用1的差分阶数使时间序列平稳,使用0的移动平均模型。

在此案例中,运用2种方法预测电力负荷,其可视化图形如下:


ARIMA模型


点击标题查阅往期内容


Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据


01

02

03

04


LSTM模型


可以看出,预测值的趋势已经基本与真实趋势保持一致,但是在预测期较长的区间段,其预测值之间的差别较大。


关于分析师


在此对Eileen对本文所作的贡献表示诚挚感谢,她专注数据处理、数据分析、数据预测领域。擅长Python、数据分析。


相关文章
|
6天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
97 70
|
27天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
6天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
58 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
14天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
39 8
|
2月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
28天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
53 3
|
29天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
1月前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
95 7
|
1月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
36 3

热门文章

最新文章