python实现股票策略回测案例

简介: 此Python代码演示了一个简单的股票策略回测,使用yfinance库获取AAPL股票2020年至2022年的数据。它计算每日收益率,并基于前一日收益率决定买卖:正则买入,负则卖出。通过模拟交易更新现金和股票余额,最终计算总收益。请注意,此示例未涵盖交易费用、滑点、风险管理等实际交易因素。

好的,以下是一个使用Python实现股票策略回测案例的简单示例:

import pandas as pd
import yfinance as yf

# 读取股票历史数据
stock_data = yf.download("AAPL", start="2020-01-01", end="2022-12-31")

# 计算每日收益率
stock_data["Return"] = stock_data["Close"].pct_change()

# 定义交易策略
def trading_strategy(data, stock_name, initial_investment):
    # 买入股票
    if data["Return"].tail(1) > 0:
        # 检查是否有足够的现金购买股票
        if data["Cash"] > stock_data[stock_name].tail(1)["Close"][-1] * 0.01:
            # 购买股票
            data["Cash"] -= stock_data[stock_name].tail(1)["Close"][-1] * 0.01
            data["Stock"] += stock_data[stock_name].tail(1)["Close"][-1] * 0.01
        else:
            pass
    # 卖出股票
    if data["Return"].tail(1) < 0:
        # 检查是否有足够的股票卖出
        if data["Stock"] > 0:
            # 卖出股票
            data["Cash"] += stock_data[stock_name].tail(1)["Close"][-1] * 0.01
            data["Stock"] -= stock_data[stock_name].tail(1)["Close"][-1] * 0.01
        else:
            pass

# 模拟交易
for i in range(len(stock_data)-1):
    # 计算每日收益
    daily_return = (stock_data["Close"][i+1] - stock_data["Close"][i]) / stock_data["Close"][i]
    # 更新模拟盘
    trading_strategy(stock_data.iloc[i+1], "AAPL", initial_investment)
    # 计算现金和股票余额
    cash = stock_data.iloc[i+1]["Cash"]
    stock = stock_data.iloc[i+1]["Stock"]
    # 打印余额
    print("Day {}: Cash = {}, Stock = {}".format(i+1, cash, stock))

# 计算总收益
total_return = (initial_investment + cash) / initial_investment
print("Total Return: {:.2%}".format(total_return))

在这个示例中,我们首先使用yfinance库下载了苹果公司的股票历史数据,然后计算了每日收益率。我们还定义了一个交易策略,该策略在每日收盘时检查股票收益率,如果收益率为正,则买入股票;如果收益率为负,则卖出股票。最后,我们使用这个交易策略模拟交易,并计算了总收益。
请注意,这只是一个简单的示例,实际的股票交易可能需要考虑更多的因素,例如交易费用、滑点、市场波动性等。此外,这个示例也没有考虑任何风险控制策略,例如止损订单、对冲等。

相关文章
|
3月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
204 26
|
2月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
1463 1
|
2月前
|
数据采集 监控 数据库
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
Python异步编程实战:爬虫案例
|
3月前
|
数据采集 Web App开发 前端开发
处理动态Token:Python爬虫应对AJAX授权请求的策略
处理动态Token:Python爬虫应对AJAX授权请求的策略
|
3月前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
286 0
|
4月前
|
机器学习/深度学习 算法 调度
【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
223 0
|
4月前
|
数据采集 存储 XML
Python爬虫XPath实战:电商商品ID的精准抓取策略
Python爬虫XPath实战:电商商品ID的精准抓取策略
|
4月前
|
Python
解决Python中AttributeError:'image'对象缺少属性'read_file'的问题策略。
通过上述策略综合考虑,您将能够定位问题并确定如何解决它。记住,Python社区很庞大,也很乐于帮助解决问题,因此不要害怕在求助时提供尽可能多的上下文和您已经尝试过的解决方案。
150 0
|
5月前
|
数据采集 存储 NoSQL
Python爬虫案例:Scrapy+XPath解析当当网网页结构
Python爬虫案例:Scrapy+XPath解析当当网网页结构
|
数据采集 JSON JavaScript
Python爬虫案例:抓取猫眼电影排行榜
python爬取猫眼电影排行榜数据分析,实战。(正则表达式,xpath,beautifulsoup)【2月更文挑战第11天】
645 2
Python爬虫案例:抓取猫眼电影排行榜

推荐镜像

更多