私有化部署 Llama3 大模型, 支持 API 访问

简介: 通过 ollama 本地运行 Llama3 大模型其实对我们开发来说很有意义,你可以私有化放服务上了。然后通过 api 访问,来处理我们的业务,比如翻译多语言、总结文章、提取关键字等等。你也可以安装 enchanted 客户端去直接访问这个服务 api 使用。

私有化部署 Llama3 大模型, 支持 API 访问

llama3 server

视频

https://www.bilibili.com/video/BV1wD421n75p/

前言

原文 https://ducafecat.com/blog/llama3-model-api-local

通过 ollama 本地运行 Llama3 大模型其实对我们开发来说很有意义,你可以私有化放服务上了。

然后通过 api 访问,来处理我们的业务,比如翻译多语言、总结文章、提取关键字等等。

你也可以安装 enchanted 客户端去直接访问这个服务 api 使用。

参考

https://llama.meta.com/llama3/

https://ollama.com/

https://github.com/ollama/ollama

https://github.com/ollama/ollama/blob/main/docs/api.md

https://github.com/sugarforever/chat-ollama

https://github.com/AugustDev/enchanted

Llama3

https://llama.meta.com/llama3/

llama3

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Model Architecture

安全性

https://llama.meta.com/trust-and-safety/

Responsible LLM Product Development Stages graphic

https://www.meta.ai/

meta ai chat

步骤

安装 ollama

https://ollama.com/

ollama

安装 Llama3 8b 模型

https://ollama.com/library

https://ollama.com/library/llama3

模型选择

llama3

安装命令

$ ollama run llama3

访问 api 服务

https://github.com/ollama/ollama/blob/main/docs/api.md

curl http://localhost:11434/api/generate -d '{
    "model":"llama3",
    "prompt": "请分别翻译成中文、韩文、日文 -> Meta Llama 3: The most capable openly available LLM to date",
    "stream": false
}'

参数解释如下:

  • model(必需):模型名称。

  • prompt:用于生成响应的提示文本。

  • images(可选):包含多媒体模型(如llava)的图像的base64编码列表。

高级参数(可选):

  • format:返回响应的格式。目前仅支持json格式。
  • options:模型文件文档中列出的其他模型参数,如温度(temperature)。
  • system:系统消息,用于覆盖模型文件中定义的系统消息。
  • template:要使用的提示模板,覆盖模型文件中定义的模板。
  • context:从先前的/generate请求返回的上下文参数,可以用于保持简短的对话记忆。
  • stream:如果为false,则响应将作为单个响应对象返回,而不是一系列对象流。
  • raw:如果为true,则不会对提示文本应用任何格式。如果在请求API时指定了完整的模板化提示文本,则可以使用raw参数。
  • keep_alive:控制模型在请求后保持加载到内存中的时间(默认为5分钟)。

返回 json 数据

{
   
   
    "model": "llama3",
    "created_at": "2024-04-23T08:05:11.020314Z",
    "response": "Here are the translations:\n\n**Chinese:** 《Meta Llama 3》:迄今最强大的公开可用的LLM\n\n**Korean:** 《Meta Llama 3》:현재 가장 강력한 공개 사용 가능한 LLM\n\n**Japanese:**\n\n《Meta Llama 3》:現在最強の公開使用可能なLLM\n\n\n\nNote: (Meta Llama 3) is a literal translation, as there is no direct equivalent for \"Meta\" in Japanese. In Japan, it's common to use the English term \"\" or \"\" when referring to Meta.",
    "done": true,
    "context": [
        ...
    ],
    "total_duration": 30786629492,
    "load_duration": 3000782,
    "prompt_eval_count": 32,
    "prompt_eval_duration": 6142245000,
    "eval_count": 122,
    "eval_duration": 24639975000
}

返回值的解释如下:

  • total_duration:生成响应所花费的总时间。
  • load_duration:以纳秒为单位加载模型所花费的时间。
  • prompt_eval_count:提示文本中的标记(tokens)数量。
  • prompt_eval_duration:以纳秒为单位评估提示文本所花费的时间。
  • eval_count:生成响应中的标记数量。
  • eval_duration:以纳秒为单位生成响应所花费的时间。
  • context:用于此响应中的对话编码,可以在下一个请求中发送,以保持对话记忆。
  • response:如果响应是以流的形式返回的,则为空;如果不是以流的形式返回,则包含完整的响应。

要计算生成响应的速度,以标记数每秒(tokens per second,token/s)为单位,可以将 eval_count / eval_duration 进行计算。

ollama 生态

https://github.com/ollama/ollama

  • 客户端 桌面、Web
  • 命令行工具
  • 数据库工具
  • 包管理工具
  • 类库

桌面 enchanted 客户端

https://github.com/AugustDev/enchanted

enchanted

设置服务器地址

ollama server url

提问使用

enchanted

代码

https://github.com/ollama/ollama

小结

感谢阅读本文

如果有什么建议,请在评论中让我知道。我很乐意改进。


flutter 学习路径


© 猫哥
ducafecat.com

end

相关文章
|
2月前
|
编解码 中间件 API
API实现跨平台访问的方式
【10月更文挑战第16天】API实现跨平台访问的方式
48 2
|
2月前
|
Kubernetes 安全 Cloud Native
云上攻防-云原生篇&K8s安全-Kubelet未授权访问、API Server未授权访问
本文介绍了云原生环境下Kubernetes集群的安全问题及攻击方法。首先概述了云环境下的新型攻击路径,如通过虚拟机攻击云管理平台、容器逃逸控制宿主机等。接着详细解释了Kubernetes集群架构,并列举了常见组件的默认端口及其安全隐患。文章通过具体案例演示了API Server 8080和6443端口未授权访问的攻击过程,以及Kubelet 10250端口未授权访问的利用方法,展示了如何通过这些漏洞实现权限提升和横向渗透。
179 0
云上攻防-云原生篇&K8s安全-Kubelet未授权访问、API Server未授权访问
|
3月前
|
人工智能 Serverless API
一键服务化:从魔搭开源模型到OpenAI API服务
在多样化大模型的背后,OpenAI得益于在领域的先发优势,其API接口今天也成为了业界的一个事实标准。
一键服务化:从魔搭开源模型到OpenAI API服务
|
3月前
|
敏捷开发 人工智能 API
如何快速部署大模型接口管理和分发系统:One-API
One API 是一个开源的接口管理与分发系统,支持多种大模型平台如 OpenAI、Google PaLM 2、百度文心一言等。通过统一接口访问不同大模型服务,简化工作流程并提高效率。适用于多模型集成项目、开发代理服务、教育研究及快速原型制作等多种场景。阿里云计算巢提供了快速部署方案,简化了部署过程。
|
3月前
|
API iOS开发 开发者
Snapchat API 访问:Objective-C 实现示例
Snapchat API 访问:Objective-C 实现示例
|
2月前
|
监控 安全 API
Docker + .NET API:简化部署和扩展
Docker + .NET API:简化部署和扩展
39 0
|
2月前
|
监控 安全 API
最完美的扩展Docker + .NET API:简化部署和扩展
最完美的扩展Docker + .NET API:简化部署和扩展
83 0
|
3月前
|
缓存 Java 应用服务中间件
随着微服务架构的兴起,Spring Boot凭借其快速开发和易部署的特点,成为构建RESTful API的首选框架
【9月更文挑战第6天】随着微服务架构的兴起,Spring Boot凭借其快速开发和易部署的特点,成为构建RESTful API的首选框架。Nginx作为高性能的HTTP反向代理服务器,常用于前端负载均衡,提升应用的可用性和响应速度。本文详细介绍如何通过合理配置实现Spring Boot与Nginx的高效协同工作,包括负载均衡策略、静态资源缓存、数据压缩传输及Spring Boot内部优化(如线程池配置、缓存策略等)。通过这些方法,开发者可以显著提升系统的整体性能,打造高性能、高可用的Web应用。
77 2
|
4月前
|
缓存 API 数据库
打造高性能后端API:从设计到部署的实战之旅
【8月更文挑战第31天】在数字化时代的浪潮中,后端API成为了连接用户、数据与服务的桥梁。本文将带领读者踏上一段从API设计、开发到部署的旅程,通过实际案例分析,揭示如何构建一个高性能的后端系统。我们将探讨现代后端架构的关键要素,包括RESTful API设计原则、数据库优化技巧、缓存策略、以及容器化部署的实践。文章旨在为开发者提供一套实用的方法论,帮助他们在面对复杂业务需求时,能够设计出既高效又可扩展的后端服务。
|
4月前
|
文字识别 算法 API
视觉智能开放平台产品使用合集之海外是否可以访问人物动漫化的api版本
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
53 0