N-Gram模型是什么?

简介: N-Gram模型是什么?

N-Gram模型是1948年诞生的


N-Gram模型是一种用于自然语言处理的统计语言模型。它用于分析和预测文本中的语言结构,特别是用于文本生成和文本分类任务。


N-Gram模型基于一个简单的假设:文本中的下一个词(或字符)出现的概率仅仅依赖于前面的N个词(或字符),而与其他部分无关。这里的N通常被称为“N-Gram”的N,它表示前面的上下文大小。例如,对于2-Gram模型(也称为bigram模型),它假设下一个词的出现只与前面的一个词相关;对于3-Gram模型(trigram模型),它假设下一个词的出现只与前面的两个词相关,依此类推。


N-Gram模型的应用包括:


文本生成:根据已有的文本数据,使用N-Gram模型生成类似风格和结构的新文本。

语言建模:用于识别和纠正拼写错误,或者自动完成用户输入的文本。

机器翻译:用于将一种语言的文本翻译成另一种语言。

文本分类:用于将文本数据分类到不同的类别,如垃圾邮件过滤、情感分析等。


N-Gram模型的主要优点是简单易懂,计算效率高,但它也有一些缺点,例如无法捕捉长距离的依赖关系和上下文信息不足。因此,在自然语言处理中,通常会结合其他更复杂的模型来提高性能。


相关文章
|
存储 机器学习/深度学习 算法
语义检索系统排序模块:基于ERNIE-Gram的Pair-wise和基于RocketQA的CrossEncoder训练单塔模型
语义检索系统排序模块:基于ERNIE-Gram的Pair-wise和基于RocketQA的CrossEncoder训练单塔模型
语义检索系统排序模块:基于ERNIE-Gram的Pair-wise和基于RocketQA的CrossEncoder训练单塔模型
|
7月前
|
算法
HanLP — HMM隐马尔可夫模型 -- 训练
HanLP — HMM隐马尔可夫模型 -- 训练
54 0
HanLP — HMM隐马尔可夫模型 -- 训练
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
6.2.3. 使用飞桨实现Skip-gram
这篇文章介绍了如何使用飞桨(PaddlePaddle)实现Skip-gram模型,包括数据下载、处理、网络定义、模型训练以及如何观察模型学习到的词向量效果。
|
7月前
|
自然语言处理
HanLP — HMM隐马尔可夫模型 -- 语料库
HanLP — HMM隐马尔可夫模型 -- 语料库
65 0
|
7月前
HanLP — HMM隐马尔可夫模型 -- 训练--归一化,计算概率
HanLP — HMM隐马尔可夫模型 -- 训练--归一化,计算概率
63 0
|
人工智能 自然语言处理 PyTorch
NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践
NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践
NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践
|
算法 数据挖掘 Linux
【文本分类】采用同义词的改进TF-IDF权重的文本分类
【文本分类】采用同义词的改进TF-IDF权重的文本分类
176 0
【文本分类】采用同义词的改进TF-IDF权重的文本分类
|
编解码 人工智能
Bert预训练新法则!
Bert预训练新法则!
354 0
Bert预训练新法则!
|
机器学习/深度学习 自然语言处理 数据库
基于GRU和am-softmax的句子相似度模型 | 附代码实现
在我搜索到的资料中,深度学习做句子相似度模型,就只有两种做法:一是输入一对句子,然后输出一个 0/1 标签代表相似程度,也就是视为一个二分类问题。
3373 0
|
机器学习/深度学习 算法 自然语言处理
隐马尔科夫模型HMM(一)HMM模型
隐马尔科夫模型(Hidden Markov Model,以下简称HMM)是比较经典的机器学习模型了,它在语言识别,自然语言处理,模式识别等领域得到广泛的应用。当然,随着目前深度学习的崛起,尤其是RNN,LSTM等神经网络序列模型的火热,HMM的地位有所下降。
3913 0