【AI大模型应用开发】【LangChain系列】7. LangServe:轻松将你的LangChain程序部署成服务

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】【LangChain系列】7. LangServe:轻松将你的LangChain程序部署成服务

大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。

LangServe 用于将 Chain 或者 Runnable 部署成一个 REST API 服务。

0. 安装

  • 同时安装langserve的服务端和客户端。
pip install "langserve[all]"
  • 只安装客户端
pip install "langserve[client]"
  • 只安装服务端
pip install "langserve[server]"

1. 代码及运行结果

1.1 服务端代码

import os
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
#!/usr/bin/env python
from fastapi import FastAPI
from langchain.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langserve import add_routes
import uvicorn
app = FastAPI(
  title="LangChain Server",
  version="1.0",
  description="A simple api server using Langchain's Runnable interfaces",
)
prompt_template = """
我的名字叫【{name}】,我的个人介绍是【{description}】。
请根据我的名字和介绍,帮我想一段有吸引力的自我介绍的句子,以此来吸引读者关注和点赞我的账号。
"""
model = ChatOpenAI()
prompt = ChatPromptTemplate.from_template(prompt_template)
add_routes(
    app,
    prompt | model,
    path="/self_introduction",
)
if __name__ == "__main__":
    uvicorn.run(app, host="localhost", port=9999)

从代码来看创建LangServe的重点:

(1)创建一个FastAPI实例:app

(2)add_routes函数直接将app, chain, path加进去

  • path:访问路径(接口)
    (3)通过 uvicorn.run 跑起来

注意上面的访问路径为/self_introduction,端口为9999,客户端要与之对应。

运行之后:

补充知识:Uvicorn是什么?

  • 基于 uvloop 和 httptools 构建的非常快速的 ASGI 服务器
  • 它不是一个 Web 框架,而是一个服务器,这是 FastAPI 框架提供的东西
  • 它是 FastAPI 的推荐使用的服务器

1.2 客户端代码

import requests
response = requests.post(
    "http://localhost:9999/self_introduction/invoke",
    json={'input': {'name': '同学小张', 'description': '热爱AI,持续学习,持续干货输出'}}
)
print(response.json())

就是发送一个post请求,注意url路径和端口号与serve端对应。url路径除了接口后面还加一个invoke,别漏了。

运行之后(请确保你的服务代码先运行起来):

大功告成。

本文比较简单,通过一个例子带大家看了下LangServe的使用方法。它其实就是将LangChain程序制作成了一个 FastAPI 服务,方便部署和发布。重点在 add_routes 函数。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
18天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
77 3
|
6天前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
129 64
|
5天前
|
机器学习/深度学习 人工智能 语音技术
Fugatto:英伟达推出的多功能AI音频生成模型
Fugatto是由英伟达推出的多功能AI音频生成模型,能够根据文本提示生成音频或视频,并修改现有音频文件。该模型基于增强型的Transformer模型,支持复杂的组合指令,具有强大的音频生成与转换能力,广泛应用于音乐创作、声音设计、语音合成等领域。
49 1
Fugatto:英伟达推出的多功能AI音频生成模型
|
17天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
12天前
|
人工智能 弹性计算 数据可视化
解决方案|触手可及,函数计算玩转 AI 大模型 评测
解决方案|触手可及,函数计算玩转 AI 大模型 评测
25 0
|
7月前
|
Shell Android开发
Android系统 adb shell push/pull 禁止特定文件
Android系统 adb shell push/pull 禁止特定文件
563 1
|
7月前
|
Android开发 Python
Python封装ADB获取Android设备wifi地址的方法
Python封装ADB获取Android设备wifi地址的方法
156 0
|
开发工具 Android开发
Mac 安卓(Android) 配置adb路径
Mac 安卓(Android) 配置adb路径
854 0
|
4月前
|
Shell Linux 开发工具
"开发者的救星:揭秘如何用adb神器征服Android设备,开启高效调试之旅!"
【8月更文挑战第20天】Android Debug Bridge (adb) 是 Android 开发者必备工具,用于实现计算机与 Android 设备间通讯,执行调试及命令操作。adb 提供了丰富的命令行接口,覆盖从基础设备管理到复杂系统操作的需求。本文详细介绍 adb 的安装配置流程,并列举实用命令示例,包括设备连接管理、应用安装调试、文件系统访问等基础功能,以及端口转发、日志查看等高级技巧。此外,还提供了常见问题的故障排除指南,帮助开发者快速解决问题。掌握 adb 将极大提升 Android 开发效率,助力项目顺利推进。
101 0