【AI大模型应用开发】3.2 RAG实战 - RAG应用+UI实现加载本地文件并对话

简介: 【AI大模型应用开发】3.2 RAG实战 - RAG应用+UI实现加载本地文件并对话

大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。

前面我们实现了RAG基本流程,今天我们在此基础上给它加个UI界面,在浏览器打开,实现上传本地文件、解析,并用大模型实现与该文档的对话。也就是一个阉割版demo版的ChatPDF或知识库对话系统。

界面采用Python的gradio库,这个库在机器学习和大模型界很火,它运行后会启动一个Web服务器,并在默认浏览器中打开一个新页面,显示Gradio界面。

别问为啥用这个,就是看大模型的界面好多都是这个库搭的,所以也就用一下。不会gradio没关系,就几行代码,很容易理解。或者可以直接用ChatGPT帮你写一个框架。

首先来安装这个库:

pip install 时加上了清华源,因为我这里使用默认源的话会安装超时,失败。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple gradio 

0. 利用大模型帮你创建UI

使用Python的gradio库来创建一个UI界面,该界面可以上传本地文件。

不会gradio也没关系,我也不会,我们可以让大模型帮你写。

当然大模型生成的代码可能会有错误,告诉大模型运行的错误,让大模型一个个修正即可。

完整的对话过程可看这个链接:https://chat.openai.com/share/3db8b8a0-a775-48cc-9833-892fd36e43b8

最终生成的代码如下:

import gradio as gr
def upload_file(input_file):
    file_contents = input_file  # 上传文件对象
    return f"你上传的文件内容是:\n{file_contents}"
gr.Interface(upload_file, 
              inputs="file",
              outputs="text",
              title="文件上传器", 
              description="请点击按钮上传文件。",
              allow_flagging=False).launch()

运行结果(通过浏览器打开下面链接可看到界面):

界面如下:点击可弹出对话框让用户选择本地文件,选择后点击Submit按钮会上传文件,上传成功后在右侧output框里会显示文件信息。

1. 上传文件后的处理

(1)引入前面我们实现的RAG文件和类

(2)实例化一个chat_bot

(3)上传文件时,调用RAG的创建向量数据库接口,创建向量数据库

from rag import RAG_Bot ## 引入前面我们实现的rag文件和类
chat_bot = RAG_Bot() ## 实例化一个chat_bot
# 定义一个处理函数,用于接收上传的文件并进行处理
def upload_file(input_file):
    chat_bot.createVectorDB(input_file) ## 创建向量库,灌入数据
    return f"你上传的文件内容是:\n{input_file}"

2. 添加聊天窗口

其实这里可以另开一个界面,实现聊天窗口,因为聊天和创建向量数据库是独立的。这里为了演示方便,我们在同一个界面上添加一个聊天框。

本人愚笨,用ChatGPT 3.5问了半天,也没有得到正确的代码。于是想了个办法白嫖用了一下 GPT4,好不容易才得到了正确的代码,感觉还不如直接去看gradio的教程来的快。

看下代码:

import gradio as gr
def process_inputs(input_file, chat_input):
    outputs = ["", ""]
    if input_file is not None:  # 处理文件上传
        outputs[0] = f"你上传的文件内容是:\n{str(input_file)}"
    if chat_input != "":  # 处理聊天输入
        outputs[1] = f"你说的是:{chat_input},很高兴与你交流!"
    return tuple(outputs)
# 输入类型为文件上传和文本框
inputs = [gr.File(), gr.Textbox(label="聊天输入")]
# 输出类型为文件内容和聊天输出
outputs = [gr.Textbox(label="文件内容"), gr.Textbox(label="聊天输出")]
iface = gr.Interface(process_inputs, 
                     inputs=inputs,
                     outputs=outputs,
                     title="文件上传和聊天窗口",
                     description="请在适当的输入框中上传文件或进行聊天。",
                     allow_flagging=False)
iface.launch()
  • 运行效果

按照前面在这个代码中添加 【上传文件后的处理】,然后将用户的输入当作query传入RAG中进行对话。最终代码如下:

import gradio as gr
from rag import RAG_Bot ## 引入前面我们实现的rag文件和类
chat_bot = RAG_Bot() ## 实例化一个chat_bot
def process_inputs(input_file, chat_input):
    outputs = ["", ""]
    if input_file is not None:  # 处理文件上传
        chat_bot.createVectorDB(input_file) ## 创建向量库,灌入数据
        outputs[0] = f"你上传的文件内容是:\n{str(input_file)}"
    if chat_input != "":  # 处理聊天输入
        outputs[1] = chat_bot.chat(chat_input) ## 将聊天输入当作query,进行对话
    return tuple(outputs)
# 输入类型为文件上传和文本框
inputs = [gr.File(), gr.Textbox(label="聊天输入")]
# 输出类型为文件内容和聊天输出
outputs = [gr.Textbox(label="文件内容"), gr.Textbox(label="聊天输出")]
iface = gr.Interface(process_inputs, 
                     inputs=inputs,
                     outputs=outputs,
                     title="文件上传和聊天窗口",
                     description="请在适当的输入框中上传文件或进行聊天。",
                     allow_flagging=False)
iface.launch()
  • 运行结果

感想

别看这几行代码,完成的并不容易,因为我不会gradio,用大模型来帮忙写程序固然可以,但大部分情况下写的程序是不对的。

有句话说的很对:AI编程的上限取决于使用者的判断力和能力。

还是要会一点gradio,才能在大模型一直无法得到正确结果时给予正确的引导。

后面有时间还是要学一下gradio库。(要学的东西实在太多了…)


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

相关文章
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!
Baichuan-M1-14B 是百川智能推出的首个开源医疗增强大模型,专为医疗场景优化,支持多语言、快速推理,具备强大的医疗推理能力和通用能力。
135 16
Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!
|
15天前
|
人工智能 自然语言处理 API
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
UI-TARS Desktop 是一款基于视觉语言模型的 GUI 代理应用,支持通过自然语言控制电脑操作,提供跨平台支持、实时反馈和精准的鼠标键盘控制。
368 17
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
|
15天前
|
人工智能 测试技术 Python
VideoChat-Flash:上海AI Lab开源高效处理超长视频的多模态大模型
VideoChat-Flash 是上海人工智能实验室等机构推出的多模态大模型,通过分层压缩技术高效处理长视频,支持长达数小时的视频输入,推理速度提升5-10倍。
56 1
VideoChat-Flash:上海AI Lab开源高效处理超长视频的多模态大模型
|
21天前
|
弹性计算 人工智能 自然语言处理
OS Copilot——面向未来的AI大模型
阿里云的智能助手`OS Copilot`是一款基于大模型构建的操作系统智能助手,支持自然语言问答、辅助命令执行、系统运维调优等功能。
60 8
OS Copilot——面向未来的AI大模型
|
2天前
|
人工智能 安全 数据库
AiCodeAudit-基于Ai大模型的自动代码审计工具
本文介绍了基于OpenAI大模型的自动化代码安全审计工具AiCodeAudit,通过图结构构建项目依赖关系,提高代码审计准确性。文章涵盖概要、整体架构流程、技术名词解释及效果演示,详细说明了工具的工作原理和使用方法。未来,AI大模型有望成为代码审计的重要工具,助力软件安全。项目地址:[GitHub](https://github.com/xy200303/AiCodeAudit)。
|
14天前
|
人工智能 供应链 搜索推荐
大模型进化论:AI产业落地将卷向何方?
大模型进化论:AI产业落地将卷向何方?
58 11
|
23天前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
|
19天前
|
人工智能 算法 前端开发
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
OmAgent 是 Om AI 与浙江大学联合开源的多模态语言代理框架,支持多设备连接、高效模型集成,助力开发者快速构建复杂的多模态代理应用。
161 72
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
|
5天前
|
人工智能 自然语言处理 搜索推荐
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
68 23
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
|
13天前
|
人工智能 自然语言处理 JavaScript
微软开源课程!21节课程教你开发生成式 AI 应用所需了解的一切
微软推出的生成式 AI 入门课程,涵盖 21 节课程,帮助开发者快速掌握生成式 AI 应用开发,支持 Python 和 TypeScript 代码示例。
198 14