【视频】LSTM神经网络架构和原理及其在Python中的预测应用|数据分享

简介: 【视频】LSTM神经网络架构和原理及其在Python中的预测应用|数据分享

长短期记忆网络——通常称为“LSTM”——是一种特殊的RNN递归神经网络,能够学习长期依赖关系。



视频:LSTM神经网络架构和工作原理及其在Python中的预测应用


么是依赖关系?

假设您在观看视频时记得前一个场景,或者在阅读一本书时您知道前一章发生了什么。

传统的神经网络无法做到这一点,这是一个主要缺点。例如,假设您想对电影中每一点发生的事件进行分类。目前尚不清楚传统的神经网络如何利用电影中先前事件来推理后来的事件。

递归神经网络解决了这个问题。它们是带有循环的网络,允许信息持续存在。循环神经网络有循环。

在上图中,一大块神经网络,查看一些输入x并输出一个值h. 循环允许信息从网络的一个步骤传递到下一个步骤。


这些循环使循环神经网络看起来有点神秘。然而,如果你想得更多,就会发现它们与普通的神经网络并没有什么不同。循环神经网络可以被认为是同一网络的多个副本,每个副本都将消息传递给后继者。考虑一下如果我们展开循环会发生什么:

这种链状性质表明循环神经网络与序列和列表密切相关。它们是用于此类数据的神经网络的自然架构。在过去的几年里,将 RNN 应用于各种问题取得了令人难以置信的成功:语音识别、语言建模、翻译、图像字幕……不胜枚举。这些成功的关键是使用“LSTM”,这是一种非常特殊的循环神经网络,几乎所有基于循环神经网络的令人兴奋的结果都是用它们实现的。本文将探讨的正是这些 LSTM。


长期依赖问题

下面是一个关于如何使用循环神经网络(RNN)来拟合语言模型的例子。

RNN 的吸引力之一是它们可能能够将先前的信息与当前任务联系起来,例如使用先前的视频帧可能会告知对当前帧的理解。如果 RNN 可以做到这一点,它们将非常有用。但他们可以吗?

有时,我们只需要查看最近的信息即可执行当前任务。例如,考虑一个语言模型试图根据之前的单词预测下一个单词。如果我们试图预测“云在天空”中的最后一个词,我们不需要任何进一步的上下文——很明显下一个词将是天空。在这种情况下,相关信息与所需位置之间的差距很小,RNN 可以学习使用过去的信息。


但也有我们需要更多上下文的情况。考虑尝试预测文本“我在中国长大……我说地道的中文”中的最后一个词。最近的信息表明,下一个词可能是一种语言的名称,但如果我们想缩小哪种语言的范围,我们需要中国的上下文,从更远的地方。相关信息和需要的点之间的差距完全有可能变得非常大。


随着差距的扩大,RNN 变得无法学习连接信息。


LSTM 网络

长短期记忆网络——通常称为“LSTM”——是一种特殊的 RNN,能够学习长期依赖关系。它们在解决各种各样的问题时表现出色,现在被广泛使用。LSTM 被明确设计为避免长期依赖问题。长时间记住信息实际上是他们的默认行为,而不是他们难以学习的东西!

所有循环神经网络都具有神经网络的重复模块链的形式。在标准 RNN 中,此重复模块将具有非常简单的结构,例如单个 tanh 层。


LSTM 也有这种链状结构,但重复模块有不同的结构。不是只有一个神经网络层,而是三个部分组成,以一种非常特殊的方式进行交互。

LSTM 的工作方式非常类似于 RNN 单元。这是 LSTM 网络的内部功能。LSTM 由三个部分组成,如图所示,每个部分执行一个单独的功能。第一部分选择来自前一个时间戳的信息是被记住还是不相关并且可以被遗忘。在第二部分中,单元尝试从该单元的输入中学习新信息。最后,在第三部分,单元将更新的信息从当前时间戳传递到下一个时间戳。LSTM 单元的这三个部分称为门。第一部分称为忘记门或遗忘门,第二部分称为输入门,最后一部分称为输出门。



Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析


每年的降雨量数据可能是相当不平稳的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当不平稳的。夏季的降雨量与冬季的降雨量一样多是很常见的。

下面是某地区2020年11月降雨量数据查看文末了解数据获取方式的图解。

作为一个连续的神经网络,LSTM模型可以证明在解释时间序列的波动性方面有优势。

使用Ljung-Box检验,小于0.05的p值表明这个时间序列中的残差表现出随机模式,表明有明显的波动性。

>>> sm.stats.acorr_ljungbox(res.resid, lags=

10

10)

Ljung-Box检验

Dickey-Fuller 检验

数据操作和模型配置

该数据集由722个月的降雨量数据组成。

选择712个数据点用于训练和验证,即用于建立LSTM模型。然后,过去10个月的数据被用来作为测试数据,与LSTM模型的预测结果进行比较。

下面是数据集的一个片段。

然后形成一个数据集矩阵,将时间序列与过去的数值进行回归。

# 形成数据集矩阵
    for i in range(len(df)-previous-1):
        a = df\[i:(i+previous), 0\]
        dataX.append(a)
        dataY.append(df\[i + previous, 0\])

然后用MinMaxScaler对数据进行标准化处理。

将前一个参数设置为120,训练和验证数据集就建立起来了。作为参考,previous = 120说明模型使用从t - 120到t - 1的过去值来预测时间t的雨量值。

前一个参数的选择要经过试验,但选择120个时间段是为了确保识别到时间序列的波动性或极端值。

# 训练和验证数据的划分
train_size = int(len(df) * 0.8)
val\_size = len(df) - train\_size
train, val = df\[0:train\_size,:\], df\[train\_size:len(df),:\]# 前期的数量
previous = 120

然后,输入被转换为样本、时间步骤、特征的格式。

# 转换输入为样本、时间步骤、特征样本、时间步骤、特征
样本、时间步骤、特征。
np.reshape(X_train, (shape\[0\], 1, shape\[1\]))

模型训练和预测

该模型在100个历时中进行训练,并指定了712个批次的大小(等于训练和验证集中的数据点数量)。

# 生成LSTM网络
model = tf.keras.Sequential()
# 列出历史中的所有数据
print(history.history.keys())
# 总结准确度变化
plt.plot(history.history\['loss'\])

下面是训练集与验证集的模型损失的关系图。

预测与实际降雨量的关系图也被生成。

相关文章
|
13天前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
42 1
|
19天前
|
机器学习/深度学习 运维 安全
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
金融交易网络与蛋白质结构的共同特点是它们无法通过简单的欧几里得空间模型来准确描述,而是需要复杂的图结构来捕捉实体间的交互模式。传统深度学习方法在处理这类数据时效果不佳,图神经网络(GNNs)因此成为解决此类问题的关键技术。GNNs通过消息传递机制,能有效提取图结构中的深层特征,适用于欺诈检测和蛋白质功能预测等复杂网络建模任务。
42 2
图神经网络在欺诈检测与蛋白质功能预测中的应用概述
|
9天前
|
SQL 存储 关系型数据库
MySQL进阶突击系列(01)一条简单SQL搞懂MySQL架构原理 | 含实用命令参数集
本文从MySQL的架构原理出发,详细介绍其SQL查询的全过程,涵盖客户端发起SQL查询、服务端SQL接口、解析器、优化器、存储引擎及日志数据等内容。同时提供了MySQL常用的管理命令参数集,帮助读者深入了解MySQL的技术细节和优化方法。
|
15天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
42 8
|
13天前
|
网络协议 物联网 数据处理
C语言在网络通信程序实现中的应用,介绍了网络通信的基本概念、C语言的特点及其在网络通信中的优势
本文探讨了C语言在网络通信程序实现中的应用,介绍了网络通信的基本概念、C语言的特点及其在网络通信中的优势。文章详细讲解了使用C语言实现网络通信程序的基本步骤,包括TCP和UDP通信程序的实现,并讨论了关键技术、优化方法及未来发展趋势,旨在帮助读者掌握C语言在网络通信中的应用技巧。
23 2
|
18天前
|
安全 网络安全 数据安全/隐私保护
利用Docker的网络安全功能来保护容器化应用
通过综合运用这些 Docker 网络安全功能和策略,可以有效地保护容器化应用,降低安全风险,确保应用在安全的环境中运行。同时,随着安全威胁的不断变化,还需要持续关注和研究新的网络安全技术和方法,不断完善和强化网络安全保护措施,以适应日益复杂的安全挑战。
38 5
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
17天前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
52 1
|
19天前
|
监控 负载均衡 网络协议
OSPF在大型网络中的应用:高效路由与可扩展性
OSPF在大型网络中的应用:高效路由与可扩展性
89 1

热门文章

最新文章