利用大数据分析挖掘出的五大安全线索

简介:

越来越多的CSO们开始依靠数据分析来从海量数据中发现新的安全威胁,并且越来越多的企业IT部门开始利用安全分析技术,信息安全专业人员已经开始从安全分析有所收获。其中最明显的是对IT安全数据来源更广泛和更深入的可视性,这能够通过数据分析来更好地了解安全风险以及实现更快的响应时间。

随着安全分析技术不断成熟,企业会惊喜地发现对安全相关数据的系统分析能够为他们挖掘出很多有价值的信息,下面是5个从安全分析中挖掘出的信息:

1.发现你永远想象不到的数据泄漏

安全分析技术给你带来的第一个惊喜是让你发现想象不到的数据泄漏的具体证据。

RSA公司高级产品营销经理Matthew Gardiner表示:“经常会挖掘出的信息是,他们会发现已经持续了一段时间的数据泄漏。”他解释说,这可能不是某种复杂的民族国家间谍活动导致的泄漏,或者黑社会性质犯罪阻止窃取的数据。

他说道,“只是数据转移到企业外部不知明的地方造成的泄漏,接下来的问题是,搞清楚如何控制数据流向。”

  1. 挖掘出你不知道需要提出的问题

IT基础设施和安全工具产生的巨量非结构化数据让安全分析师甚至很难开始查询数据,以回答有关企业风险状态的常见问题。让分析程序回答这些显而易见的问题有时候会出现意想不到的回报,因为会出现其他模式来回答安全团队可能没想过要提出的问题。

“通常情况下,在数据被存储和访问之前,企业可能不知道他们需要什么或者他们想要解决什么问题,”OpenDNS公司首席技术官Dan Hubbard表示,“分析技术可以发现安全情报,并挖掘出我们不知道的问题。”

更重要的是,这些趋势的可视化还可以帮助更好地与业务部门沟通风险,并解决业务领导可能提出的重要问题。

安全服务供应商BTB Security公司管理合伙人Ron Schlecht表示,“他们会开始提出很好的问题,所以你应该寻找一个不同的视角,对于你应该寻找的东西,以及你应该如何看待这些问题,最好与不同的业务领导进行合作,这会让大家明白安全对整个企业的重要性。”

3.找出不同数据来源之间的关联

通常情况下,安全分析程序会在数据来源之间进行关联,而安全团队可能从来没有发现过这种关联。

“大多数安全分析程序需要将来自不同来源的数据整合到单个引擎,来进行分析,查找模式和异常情况,”Cambridge Intelligence公司北美地区总经理Corey Lanum表示,“当我的客户从不同数据来源加载数据时,他们通常立即会看到原本存储在不同数据库没有关联的数据元素之间存在的关联。”

这种类型的建模可以用于发现网络不同部分、不同部门信息之间的关联。

  1. 发现你从来不知道的IT操作问题

安全分析技术的优势可能会超出IT安全的范畴,转而深入IT操作。在很多情况下,对安全数据进行建模和点连接还可以发现IT操作问题,这些问题可能会影响可操作性、工作流和效率。

Schlecht表示:“让很多企业惊讶的一个好处是,安全分析还能够帮助找出IT操作问题,这是因为分析程序能够获得一定的可视性。”

例如,多年前,Schlecht曾在企业内部工作,他发现一个新的分析程序不仅能帮助发现安全问题,还能够发现企业应用程序的开发问题,而这个问题让其开发团队困扰了数小时。在检查应用程序和安全事件日志后,一些完全无关的东西帮助找出了问题的根源。

5.找出你不知道的策略违规行为

分析技术还提供了另一个惊喜:发现企业中的策略违规行为,这通常是一把双刃剑。这些不一定是恶意行为,但是确实违反了策略,麻烦的是,一旦安全团队看到这些违规行为,他们就会采取行动,而不管多么麻烦。

“你听说过流氓云服务,通过分析,你会看到真正的流氓云服务,”Gardiner表示,“这对企业是好事,因为你得到了更好的可视性,但是你不会置之不理。你必须采取一些措施,并确定它的重要性,以及是否需要进行调查。”

本文转自d1net(转载)

相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
54 4
|
1月前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
63 5
|
2月前
|
存储 大数据 测试技术
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
在大数据环境中,数据存储格式直接影响查询性能和成本。本文探讨了 Parquet、Avro 和 ORC 三种格式在 Google Cloud Platform (GCP) 上的表现。Parquet 和 ORC 作为列式存储格式,在压缩和读取效率方面表现优异,尤其适合分析工作负载;Avro 则适用于需要快速写入和架构演化的场景。通过对不同查询类型(如 SELECT、过滤、聚合和联接)的基准测试,本文提供了在各种使用案例中选择最优存储格式的建议。研究结果显示,Parquet 和 ORC 在读取密集型任务中更高效,而 Avro 更适合写入密集型任务。正确选择存储格式有助于显著降低成本并提升查询性能。
384 1
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
|
1天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
24 14
|
8天前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
6天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
32 1
|
8天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
10天前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。
|
10天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
3天前
|
存储 安全 大数据
下一篇
无影云桌面