R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

简介: R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

示例1:使用MCMC的指数分布采样

任何MCMC方案的目标都是从“目标”分布产生样本。在这种情况下,我们将使用平均值为1的指数分布作为我们的目标分布。所以我们从定义目标密度开始:

target = function(x){
  if(x<0){
    return(0)}
  else {
    return( exp(-x))
  }
}

定义了函数之后,我们现在可以用它来计算几个值(只是为了说明函数的概念):

target(1)


[1] 0.3678794


target(-1)


[1] 0


接下来,我们将规划一个Metropolis-Hastings方案,从与目标成比例的分布中进行抽样

x[1] = 3     #这只是一个起始值,我设置为3
for(i in 2:1000){
  A = target(proposedx)/target(currentx) 
  if(runif(1)<A){
    x[i] = proposedx       # 接受概率min(1,a)
  } else {
    x[i] = currentx        #否则“拒绝”行动,保持原样
  }


注意,x是马尔可夫链的实现。我们可以画几个x的图:

我们可以将其封装在一个mcmc函数中,以使代码更整洁,这样更改起始值和提议分布更容易

for(i in 2:niter){
    currentx = x[i-1]
    proposedx = rnorm(1,mean=currentx,sd=proposalsd) 
    A = target(proposedx)/target(currentx)
    if(runif(1)<A){
      x[i] = proposedx       # 接受概率min(1,a)
    } else {
      x[i] = currentx        # 否则“拒绝”行动,保持原样
    }


现在我们将运行MCMC方案3次,看看结果有多相似:

z1=MCMC(1000,3,1)
z2=MCMC(1000,3,1)
z3=MCMC(1000,3,1)
plot(z1,type="l")


par(mfcol=c(3,1)) #告诉R将3个图形放在一个页面上
hist(z1,breaks=seq(0,maxz,length=20))


练习

使用函数easyMCMC了解以下内容:

  1. 不同的起始值如何影响MCMC方案?
  2. 较大/较小的提案标准差有什么影响?
  3. 尝试将目标函数更改为
target = function(x){
  
  return((x>0 & x <1) + (x>2 & x<3))
}


这个目标看起来像什么?如果提议sd太小怎么办?(例如,尝试1和0.1)

例2:估计等位基因频率

在对双等位基因座的基因型(如具有AA和AA等位基因的基因座)进行建模时,一个标准的假设是群体是“随机”的。这意味着如果p是等位基因AA的频率,那么基因型 将分别具有频率

p一个简单的先验是假设它在[0,1]上是均匀的。假设我们抽样n个个体,观察 基因型 基因型 基因型

下面的R代码给出了一个简短的MCMC例程,可以从p的后验分布中进行采样。请尝试遍历该代码,看看它是如何工作的。

prior = function(p){
  if((p<0) || (p>1)){  # || 这里意思是“或”
    return(0)}
  else{
    return(1)}
}
likelihood = function(p, nAA, nAa, naa){
  return(p^(2*nAA) * (2*p*(1-p))^nAa * (1-p)^(2*naa))
}
psampler = function(nAA, nAa, naa){
  for(i in 2:niter){
    if(runif(1)<A){
      p[i] = newp       # 接受概率min(1,a)
    } else {
      p[i] = currentp        # 否则“拒绝”行动,保持原样
    }


运行此样本。

现在用一些R代码来比较后验样本和理论后验样本(在这种情况下可以通过分析获得;因为我们观察到121个As和79个as,在200个样本中,p的后验样本是β(121+1,79+1)。

hist(z,prob=T)
lines(x,dbeta(x,122, 80))  # 在直方图上叠加β密度


您也可能希望将前5000 z的值丢弃为“burnin”(预烧期)。这里有一种方法,在R中仅选择最后5000 z

hist(z[5001:10000])


练习

研究起点和提案标准偏差如何影响算法的收敛性。

例3:估计等位基因频率和近交系数

一个复杂一点的替代方法是假设人们有一种倾向,即人们会与比“随机”关系更密切的其他人近交(例如,在地理结构上的人口中可能会发生这种情况)。一个简单的方法是引入一个额外的参数,即“近亲繁殖系数”f,并假设 基因型有频率

在大多数情况下,将f作为种群特征来对待是很自然的,因此假设f在各个位点上是恒定的。

请注意,f和p都被约束为介于0和1之间(包括0和1)。对于这两个参数中的每一个,一个简单的先验是假设它们在[0,1]上是独立的。假设我们抽样n个个体,观察 基因型 基因型 基因型

练习:

  • 编写一个短的MCMC程序,从f和p的联合分布中取样。
sampler = function(){
  f[1] = fstartval
  p[1] = pstartval
  for(i in 2:niter){
    currentf = f[i-1]
    currentp = p[i-1]
    newf = currentf + 
    newp = currentp + 
  
  }
  return(list(f=f,p=p)) # 返回一个包含两个名为f和p的元素的“list”
}


  • 使用此样本获得f和p的点估计(例如,使用后验平均数)和f和p的区间估计(例如,90%后验置信区间),数据:

附录:GIBBS采样

您也可以用Gibbs采样器解决这个问题

为此,您将想要使用以下“潜在变量”表示模型:

将zi相加得到与上述相同的模型:

相关文章
|
7月前
|
机器学习/深度学习 数据可视化
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
|
7月前
|
数据可视化 定位技术
R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化
R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化
|
7月前
|
存储 机器学习/深度学习 算法
R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
50 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。