R语言社区主题检测算法应用案例

简介: R语言社区主题检测算法应用案例

使用R检测相关主题的社区


创建主题网络

对于Project Mosaic,我正在通过分析抽象文本和共同作者社交网络来研究UNCC在社会科学和计算机和信息学方面的出版物。

我遇到的一个问题是:如何衡量主题之间的关系(相关性)?特别是,我想创建一个连接类似主题的网络可视化,并帮助用户更轻松地浏览大量主题(在本例中为100个主题)。


数据准备

我们的第一步是加载作为LDA输出的主题矩阵。LDA有两个输出:字主题矩阵和文档主题矩阵。

作为加载平面文件的替代方法,您可以使用topicmodels包lda函数的输出来创建任何单词主题和文档主题矩阵。

# 读取作者主题矩阵
author.topic <- read.csv("./author_topics.csv", stringsAsFactors = F)
#

top.words <- word.topics[order(-word.topic[,i])]
name$topic_name[i] <- paste(top.words[1:5], collapse = " + ")
}
# 
colnames(author.topic) <- c("author_name",name$topic_name)

与摘要是文档的标准LDA不同,我运行了一个“以作者为中心”的LDA,其中所有作者的摘要被合并并被视为每个作者的一个文档。我跑这是因为我的最终目标是使用主题建模作为信息检索过程来确定研究人员的专业知识。


创建静态网络

在下一步中,我使用每个主题的单词概率之间的相关性创建一个网络。

首先,我决定只保留具有显着相关性(20%+相关性)的关系(边缘)。我使用20%,因为它对于100个观察维基百科的样本具有0.05的统计显着性水平。


cor_threshold <- .2
接下来,我们使用相关矩阵来创建igraph数据结构,删除所有具有小于20%最小阈值相关性的边。


library(igraph)
让我们绘制一个简单的igraph网络。


par(mar=c(0, 0, 3, 0))y30")title("Strength Between Topics Based On Word Probabilities", cex.main=.8)


每个数字代表一个主题,每个主题都有编号以识别它。

使用社区检测,特别是igraph中的标签传播算法来确定网络中的群集。

clp <- cluster_label_prop(graph)class(clp)title("Community Detection in Topic Network", cex.main=.8)

社区检测发现了13个社区,以及每个孤立主题的多个额外社区(即没有任何联系的主题)。

与我最初的观察结果类似,该算法找到了我们在第一个图中识别的三个主要聚类,但也添加了其他较小的聚类,这些聚类似乎不适合三个主要聚类中的任何一个。

V(graph)$community <- clp$membershipV(graph)$degree <- degree(graph, v = V(graph))

动态可视化

在本节中,我们将使用visNetwork允许R中的交互式网络图的包。

首先,让我们调用库并运行visIgraph一个交互式网络,但是使用igraph图形设置在igraph结构(图形)上运行。

library(visNetwork)


这是一个良好的开端,但我们需要有关网络的更多详细信息。

让我们通过创建visNetwork数据结构走另一条路。为此,我们将igraph结构转换为visNetwork数据结构,然后将列表分成两个数据帧:节点和边缘。

data <- toVisNetworkData(graph)nodes <- data[[1]]


删除没有连接的节点(主题)(度= 0)。

nodes <- nodes[nodes$degree != 0,]


让我们添加颜色和其他网络参数来改善我们的网络。

library(RColorBrewer)col <- brewer.pal(12, "Set3")[as.factor(nodes$community)]nodes$shape <- "dot"s$betweenness))+.2)*20 # Node sizenodes$color.highlight.background <- "orange"


最后,让我们用交互式情节创建我们的网络。您可以使用鼠标滚轮进行缩放。


visNetwork(nodes, edges) %>%visOptions(highlightNearest = TRUE, selectedBy = "community", nodesIdSelection = TRUE)


首先,有两个下拉菜单。第一个下拉列表允许您按名称查找任何主题(按单词概率排名前五个单词)。

第二个下拉列表突出显示了我们算法中检测到的社区。

最大的三个似乎是:

  • 计算(灰色,簇4)
  • 社交(绿蓝,簇1)
  • 健康(黄色,簇2)

检测到的较小社区有什么独特之处?你能解释一下吗?


相关文章
|
13天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
30 1
|
13天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
37 1
|
22天前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
35 4
|
20天前
|
机器学习/深度学习 监控 算法
基于反光衣和检测算法的应用探索
本文探讨了利用机器学习和计算机视觉技术进行反光衣检测的方法,涵盖图像预处理、目标检测与分类、特征提取等关键技术。通过YOLOv5等模型的训练与优化,展示了实现高效反光衣识别的完整流程,旨在提升智能检测系统的性能,应用于交通安全、工地监控等领域。
|
22天前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
51 3
|
1月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
33 0
|
14天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
14天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
存储 数据可视化 数据挖掘
R语言在生物信息学中的应用
【10月更文挑战第21天】生物信息学是生物学、计算机科学和信息技术相结合的交叉学科,主要研究生物大分子信息的存储、处理、分析和解释。R语言作为一种强大的统计分析工具,被广泛应用于生物信息学领域。本文将介绍R语言在生物信息学中的应用,包括基因组学、转录组学、蛋白质组学、代谢组学等方面,帮助读者了解R语言在生物信息学中的重要性和应用前景。
66 4
|
2月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
88 3