Vript:最为详细的视频文本数据集,每个视频片段平均超过140词标注 | 多模态大模型,文生视频

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: [Vript](https://github.com/mutonix/Vript) 是一个大规模的细粒度视频文本数据集,包含12K个高分辨率视频和400k+片段,以视频脚本形式进行密集注释,每个场景平均有145个单词的标题。除了视觉信息,还转录了画外音,提供额外背景。新发布的Vript-Bench基准包括三个挑战性任务:Vript-CAP(详细视频描述)、Vript-RR(视频推理)和Vript-ERO(事件时序推理),旨在推动视频理解的发展。

🎬 Vript: Refine Video Captioning into Video Scripting

将传统视频标注细化为视频脚本标注


Github地址: mutonix/Vript (github.com)

Vript是一个带有12K个注释的高分辨率视频(超过400k片段)的细粒度视频文本数据集。该数据集的注释受到视频脚本的启发。如果我们想做一个视频,我们必须首先写一个脚本来组织如何拍摄视频中的场景。为了拍摄一个场景,我们需要决定内容,拍摄类型(中景,特写等),以及相机如何移动(平移,倾斜等)。因此,受到视频脚本格式的启发,我们以视频脚本的方式对视频进行注释。与之前的视频文本数据集不同,我们在不丢弃任何场景的情况下对整个视频来进行密集注释,每个场景都有一个约145个单词的标题。除了视觉模态,我们还将画外音转录成文字,并与视频标题放在一起,为视频注释提供更多的背景信息。

Vript-overview_00.png

此外,我们提出了Vript-Bench,这个新的benchmark包括三个具有挑战性的视频理解任务:

  • Vript-CAP (Caption): 一个测试模型描述视频能力的benchmark。相比之前的benchmark,如MSR-VTT 以及Panda-70M ,它们的标注都比较短,一般只有一到两句话,对于目前的视频多模态模型来说,已经过于简单。Vript-CAP数据集测试模型输出详细描述的能力。
  • Vript-RR(Retrieve then Reason): 一个新的视频推理benchmark。相比直接短视频片段的QA,Vript-RR基于长视频,首先给出视频中的场景的详细描述作为提示,然后就场景中的细节提出问题。
  • Vript-ERO(Event Re-ordering): 一个新的视频时序推理benchmark。Vript-ERO通过提供位于同一视频的两个/四个不同视频时间点的场景描述,并要求模型给出正确的场景时间顺序。

Vript-bench_00.png

目录
相关文章
|
9月前
|
机器学习/深度学习 数据可视化 PyTorch
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
零基础入门语义分割-地表建筑物识别 Task5 模型训练与验证-学习笔记
522 2
|
30天前
|
人工智能 并行计算 PyTorch
SPRIGHT:提升文本到图像模型空间一致性的数据集
SPRIGHT 是一个专注于空间关系的大型视觉-语言数据集,通过重新描述600万张图像,显著提升文本到图像模型的空间一致性。
43 18
SPRIGHT:提升文本到图像模型空间一致性的数据集
|
4月前
|
人工智能 计算机视觉
首次!用合成人脸数据集训练的识别模型,性能高于真实数据集
【10月更文挑战第9天】Vec2Face是一种创新的人脸图像合成方法,旨在解决现有方法在生成具有高区分度身份和广泛属性变化的人脸图像时的局限性。该方法通过使用样本向量作为输入,结合特征掩码自编码器和解码器,能够高效生成大规模人脸数据集,显著提升人脸识别模型的训练效果。Vec2Face在多个真实世界测试集上表现出色,首次在某些测试集上超越了使用真实数据集训练的模型。然而,该方法仍存在一些局限性,如生成的变化可能无法完全覆盖真实世界的多样性,且需要较高的计算资源。
45 2
|
4月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
642 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
4月前
|
数据采集
遥感语义分割数据集中的切图策略
该脚本用于遥感图像的切图处理,支持大尺寸图像按指定大小和步长切割为多个小图,适用于语义分割任务的数据预处理。通过设置剪裁尺寸(cs)和步长(ss),可灵活调整输出图像的数量和大小。此外,脚本还支持标签图像的转换,便于后续模型训练使用。
40 0
|
6月前
评估数据集CGoDial问题之多模态对话为什么重要
评估数据集CGoDial问题之多模态对话为什么重要
|
人工智能 数据挖掘 PyTorch
VLE基于预训练文本和图像编码器的图像-文本多模态理解模型:支持视觉问答、图文匹配、图片分类、常识推理等
VLE基于预训练文本和图像编码器的图像-文本多模态理解模型:支持视觉问答、图文匹配、图片分类、常识推理等
VLE基于预训练文本和图像编码器的图像-文本多模态理解模型:支持视觉问答、图文匹配、图片分类、常识推理等
|
机器学习/深度学习 自然语言处理 算法
TabR:检索增强能否让深度学习在表格数据上超过梯度增强模型?
这是一篇7月新发布的论文,他提出了使用自然语言处理的检索增强*Retrieval Augmented*技术,目的是让深度学习在表格数据上超过梯度增强模型。
153 0
|
JSON 算法 数据格式
优化cv2.findContours()函数提取的目标边界点,使语义分割进行远监督辅助标注
可以看到cv2.findContours()函数可以将目标的所有边界点都进行导出来,但是他的点存在一个问题,太过密集,如果我们想将语义分割的结果重新导出成labelme格式的json文件进行修正时,这就会存在点太密集没有办法进行修改,这里展示一个示例:没有对导出的结果进行修正,在labelme中的效果图。
267 0
|
人工智能 人机交互
可组合扩散模型主打Any-to-Any生成:文本、图像、视频、音频全都行
可组合扩散模型主打Any-to-Any生成:文本、图像、视频、音频全都行
200 0

热门文章

最新文章