机器学习基础入门(一)(机器学习定义及分类)

简介: 机器学习基础入门(一)(机器学习定义及分类)

机器学习定义

给予计算机无需特意带有目的性编程便有学习能力的算法

深度学习算法

主要有监督学习非监督学习两类

监督学习(supervised learning)

定义

1、学习由x映射到y的映射关系

2、主动给予机器学习算法正确示例,算法通过示例来学习映射关系

举例

1、给邮件判断是否是垃圾邮件

2、给音频输出音频的文本

3、给英语输出西班牙语

4、给广告以及用户信息,判断用户是否会点击这个广告

5、给图像以及其他传感器信息,判断汽车以及其他物体的位置

6、给不同房子大小对应的价格(如下图),判断朋友房子(已知大小)对应的价格

总结

给算法正确的x、y值,算法能够学习x->y的映射关系,从而此后我们给x便可以知道y的值,

这就是监督学习算法

监督学习算法主要由两种类型:1、回归 2、分类

非监督学习(unsupervised learning)

定义

1、数据仅仅有x输入,并没有输出标签y

2、非监督算法没有特定的正确输出

3、算法要主动研究数据分布的结构特点等

举例

1、聚类模型:谷歌新闻推荐

概述:如果我们看一篇有关熊猫、双胞胎的文章,谷歌新闻会很自然的给你推荐其他有熊猫和双胞胎关键字的新闻。本质上是因为算法将这些新闻归为一类,而事先我们并没与规定要根据哪些词将文章归类。

流程:算法主动学习文章标题中的重点关键字---->根据关键字将数万计的新闻分成数万计的类型---->在用户搜索时将同种类型新闻同步展示

核心:工作人员并没有告诉算法哪些是关键字,也没有说要分为几类,在没有监督的情况下算法要自己去学习这些知识

2、聚类模型:客户分类

概述:根据一些指标将用户呈现在空间中的不同位置,算法自己学习将客户分为几类,并判断哪一类的客户会订阅我的专栏(嘻嘻)

流程:算法主动学习用户所在的位置---->自己确定要将用户分为几类---->根据函数等数学方法将其分为几类

核心:工作人员并没有告诉算法要分为几类,在没有监督的情况下算法要自己去确定要分为几类,并成功分类

(下图中的客户就将被分为三类)

总结

监督算法主要有三类: 1、聚类  2、异常值检测  3、降维

上面这三类算法特点都是:没有人类监督的情况下,算法要自己挖掘数据的特点从而总结出一些数据的特性,来进行任务处理

总结

机器学习:让算法拥有类似于人类的学习能力,能够不靠人类手动操作自动能够学习一些知识,并代替人类完成一些工作。

机器学习算法分为:一、监督学习    二、非监督学习

监督学习典型算法:回归、分类

非监督学习典型算法:聚类、降维

本篇文章如果能帮助到大家,大家可以点点赞、收收藏呀~

 

相关文章
|
3月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
1月前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
81 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
52 2
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
40 1
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
77 0
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
46 0
|
3月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
32 1
|
3月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
83 2
|
3月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
41 4