算法系列--动态规划--子序列(2)(上)

简介: 算法系列--动态规划--子序列(2)

💕"你可以说我贱,但你不能说我的爱贱。"💕

作者:Mylvzi

文章主要内容:算法系列–动态规划–子序列(2)

今天带来的是算法系列--动态规划--子序列(2),包含了关于子序列问题中较难的几道题目(尤其是通过二维状态表示来推导状态转移方程)

1.最⻓定差⼦序列

链接:

https://leetcode.cn/problems/longest-arithmetic-subsequence-of-given-difference/description/

分析:

  • 状态表示:dp[i]:以i为结尾的,最长的定差子序列的长度
  • 状态转移方程:if(hash.contains(a - difference)) dp[i] = dp[k] + 1
  • 优化:由于要寻找a-difference与其对应的下标k,所以我们可以利用一个哈希表来建立数值与下标之间的映射关系

代码:

class Solution {
    public int longestSubsequence(int[] arr, int difference) {
        Map<Integer,Integer> hash = new HashMap<>();
        int ret = 1;// 记录最值
        for(int a : arr) {
            hash.put(a,hash.getOrDefault(a-difference, 0 ) + 1);// 将当前位置插入到哈希表中
            ret = Math.max(ret,hash.get(a));// 更新最值
        }
        return ret;
    }
}

2.最⻓的斐波那契⼦序列的⻓度

链接:

https://leetcode.cn/problems/length-of-longest-fibonacci-subsequence/

分析:

代码:

class Solution {
    public int lenLongestFibSubseq(int[] nums) {
        int n = nums.length;
        int[][] dp = new int[n][n];
        // 初始化为2
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < n; j++) dp[i][j] = 2;
        }
        Map<Integer,Integer> hash = new HashMap<>();
        for(int i = 0; i < n; i++) hash.put(nums[i], i);// 将数组中的值和下标存入到哈希表之中
        hash.put(nums[0],0);
        int ret = 2;
        // 填表
        for(int j = 1; j < n; j++) {
            for(int i = 0; i < j; i++) {
                int a = nums[j] - nums[i];// 得到前一个位置的数
                if(a < nums[i] && hash.containsKey(a)) {//必须包含 且下标在i之前
                    dp[i][j] = dp[hash.get(a)][i] + 1;// 更新
                }
                ret = Math.max(ret,dp[i][j]);// 更新最值
            }
        }
        return ret < 3 ? 0 : ret;// 处理极端情况(无fib数列)
    }
}

算法系列--动态规划--子序列(2)(下)https://developer.aliyun.com/article/1480801?spm=a2c6h.13148508.setting.28.361f4f0eyTL4lb


目录
相关文章
|
2月前
|
算法 开发者 Python
惊呆了!Python算法设计与分析,分治法、贪心、动态规划...这些你都会了吗?不会?那还不快来学!
【7月更文挑战第10天】探索编程巅峰,算法至关重要。Python以其易读性成为学习算法的首选。分治法,如归并排序,将大问题拆解;贪心算法,如找零问题,每步求局部最优;动态规划,如斐波那契数列,利用子问题解。通过示例代码,理解并掌握这些算法,提升编程技能,面对挑战更加从容。动手实践,体验算法的神奇力量吧!
60 8
|
2月前
|
算法 Python
算法不再难!Python分治法、贪心、动态规划实战解析,轻松应对各种算法挑战!
【7月更文挑战第8天】掌握Python算法三剑客:分治、贪心、动态规划。分治如归并排序,将大问题拆解递归解决;贪心策略在每步选最优解,如高效找零;动态规划利用子问题解,避免重复计算,解决最长公共子序列问题。实例展示,助你轻松驾驭算法!**
50 3
|
1月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
1月前
|
算法 Java 测试技术
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
这篇文章介绍了基于动态规划法的三种算法:解决背包问题的递归和自底向上实现、Warshall算法和Floyd算法,并提供了它们的伪代码、Java源代码实现以及时间效率分析。
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
|
2月前
|
算法 Python
Python算法高手进阶指南:分治法、贪心算法、动态规划,掌握它们,算法难题迎刃而解!
【7月更文挑战第10天】探索Python算法的精华:分治法(如归并排序)、贪心策略(如找零钱问题)和动态规划(解复杂问题)。通过示例代码揭示它们如何优化问题解决,提升编程技能。掌握这些策略,攀登技术巅峰。
62 2
|
2月前
|
算法 程序员 Python
算法小白到大神的蜕变之路:Python分治法、贪心、动态规划,一步步带你走向算法巅峰!
【7月更文挑战第9天】探索算法之旅,以Python解锁编程高手之路。分治法如二分查找,将复杂问题拆解;贪心算法解决活动选择,每次选取局部最优;动态规划求斐波那契数列,避免重复计算,实现全局最优。每一步学习,都是编程能力的升华,助你应对复杂挑战,迈向算法大师!
34 1
|
2月前
|
存储 算法 Python
Python算法界的秘密武器:分治法巧解难题,贪心算法快速决策,动态规划优化未来!
【7月更文挑战第9天】Python中的分治、贪心和动态规划是三大关键算法。分治法将大问题分解为小问题求解,如归并排序;贪心算法每步选局部最优解,不保证全局最优,如找零钱;动态规划存储子问题解求全局最优,如斐波那契数列。选择合适算法能提升编程效率。
49 1
|
2月前
|
存储 算法 Python
震撼!Python算法设计与分析,分治法、贪心、动态规划...这些经典算法如何改变你的编程世界!
【7月更文挑战第9天】在Python的算法天地,分治、贪心、动态规划三巨头揭示了解题的智慧。分治如归并排序,将大问题拆解为小部分解决;贪心算法以局部最优求全局,如Prim的最小生成树;动态规划通过存储子问题解避免重复计算,如斐波那契数列。掌握这些,将重塑你的编程思维,点亮技术之路。
51 1
|
2月前
|
存储 算法 大数据
Python算法高手的必修课:深入理解分治法、贪心算法、动态规划,让你的代码更智能!
【7月更文挑战第9天】在Python算法学习中,分治法(如归并排序)将大问题分解为小部分递归解决;贪心算法(如货币找零)在每步选择局部最优解尝试达到全局最优;动态规划(如斐波那契数列)通过存储子问题解避免重复计算,解决重叠子问题。掌握这三种方法能提升代码效率,解决复杂问题。
35 1
|
2月前
|
算法 索引 Python
逆袭算法界!Python分治法、贪心算法、动态规划深度剖析,带你走出算法迷宫!
【7月更文挑战第8天】分治法,如快速排序,将大问题分解并合并解;贪心算法,选择局部最优解,如活动选择;动态规划,利用最优子结构避免重复计算,如斐波那契数列。Python示例展示这些算法如何解决实际问题,助你精通算法,勇闯迷宫。
30 1