如何用MongoDB Atlas和大语言模型,高效构建企业级AI应用?

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 利用生成式 AI 强化应用程序为客户打造令人叹服、真正差异化的体验意味着将人工智能建立在事实的基础之上

利用生成式 AI 强化应用程序为客户打造令人叹服、真正差异化的体验意味着将人工智能建立在事实的基础之上。这种事实来自于您的数据,更具体地说,来自于您最新的操作数据。

无论您是提供具有高级语义搜索的高度个性化体验,还是生成用户提示的内容和对话,MongoDB Atlas 都可以统一操作、分析和向量搜索数据服务,以简化将大语言模型 (LLM) 和转换器模型的强大功能嵌入到您的应用程序中。

开发者每天都在构建下一代具有突破性和变革性的采用生成式 AI 技术的应用程序。商业 LLM 和开源 LLM 正在以惊人的速度发展。围绕它们构建的框架和工具数不胜数,创新也变得大众化了。然而,开发团队必须跨越鸿沟,将这些应用程序从原型转变为企业就绪。

首先,这些大型模型提供的答案可能不正确或信息依据不足,因为它们访问的数据过时了。解决答案信息依据不足的问题有两种方法:优化大型模型或为其提供长期记忆。但是,这样做会产生第二个障碍,在采取了正确的安全控制措施的情况下,以用户期望的规模和性能围绕有信息依据的 LLM 部署应用程序。

开发者需要使用具有灵活数据模型的数据平台,以适应不断变化的非结构化和结构化数据,以便为大型模型提供信息,而不会受限于僵化的模式。

虽然优化模型是一种方法,但在时间和计算资源方面成本过高。这意味着开发者需要能够将数据作为提示的上下文呈现给大型模型。他们需要为这些生成式模型提供长期记忆。

下面我们将讨论一些示例,说明如何使用各种 LLM 和生成式 AI 框架实现这一点。

点击链接查看我们的 AI 资源页面,详细了解有关使用 MongoDB 构建采用 AI 技术的应用。

开始使用 MongoDB Atlas和大语言模型的五个资源

MongoDB Atlas 可以无缝集成领先的生成式 AI 服务和系统,如超大规模服务提供商和开源 LLM 及框架。通过 Atlas 数据库和 Atlas Vector Search将文档和向量嵌入数据存储结合使用,开发者可以加速构建基于真实操作数据的生成式 AI 强化应用程序。

以下是如何使用热门的 LLM 框架和 MongoDB 的示例:

开始使用Atlas Vector Search 和 OpenAI 进行语义搜索

本教程将引导您完成使用 MongoDB Atlas 对示例电影数据集执行语义搜索的步骤。首先,您将设置 Atlas Trigger,以便在将新文档插入集群时调用 OpenAI API,从而将其转换为向量嵌入。然后,您将使用 Atlas Vector Search 执行向量搜索查询。甚至还有一个特殊的奖励部分:利用 HuggingFace 模型。
image.png

阅读教程:https://www.mongodb.com/developer/products/atlas/semantic-search-mongodb-atlas-vector-search/

借助Llamalndex和MongoDB,使用您的专有数据构建生成式 AI 强化聊天应用

LlamaIndex 提供的简单而灵活的接口可以连接 LLM 与外部数据。这篇由 LlamaIndex 和 MongoDB 联合撰写的博客详细介绍了为什么以及如何构建自己的聊天应用。博客中附带的 notebook 提供了有关如何使用英语语言查询来查询任何 PDF 文档的代码演练。
image.png

阅读博客:https://medium.com/llamaindex-blog/build-a-chatgpt-with-your-private-data-using-llamaindex-and-mongodb-b09850eb154c

了解如何将 Atlas Vector Search 用作 LangChain 的向量存储

正如合作伙伴关系公告博客文章中所述,LangChain 和 MongoDB Atlas 实属天作之合,有机社区所表现出的热情证明了这一点,促成了 LangChain 中针对 MongoDB 的多次集成。除了现在支持 Atlas Vector Search 作为向量存储之外,还已经支持将 MongoDB 用作聊天日志历史记录。
image.png

网址阅读博客:https://js.langchain.com/docs/integrations/vectorstores/mongodb_atlas/

使用 MindsDB AI 集合直接在 MongoDB Atlas 中生成预测

MindsDB 是一个开源机器学习平台,它将自动机器学习引入数据库中。在此博客中,您将使用 MindsDB AI 集合直接在 Atlas 中生成预测,这样您就能够将预测数据用作常规数据来消费使用,查询这些预测数据,并通过简化部署工作流程来加快开发速度。

通过Atlas Triggers 将 HuggingFace 转换器模型集成到 MongoDB Atlas 中

HuggingFace 是一个 AI 社区,可以轻松构建、训练和部署机器学习模型。利用 Atlas Triggers 以及 HuggingFace,您可以轻松地应对操作数据的变化,这些数据为您的模型提供了长期记忆。了解如何设置 Triggers 以自动预测 MongoDB 数据库中新文档的情感信息,并将其作为附加字段添加到您的文档中。
image.png

阅读博客:https://github.com/philschmid/huggingface-mongodb-example

示例应用架构显示了外部或专有数据如何为 LLM 提供长期记忆,以及数据如何从用户的输入流向由 LLM 提供支持的响应。

使用 MongoDB 为生成式 AI 强化应用实现从原型到生产

MongoDB 基于 Atlas 构建的开发者数据平台可提供经过优化的现代化开发者体验,同时也经过全球数千家企业的实战测试,能够大规模、安全地运行。

无论您是在初创公司还是企业中构建下一个重大应用,Atlas 都可以让您:

● 加快构建基于真实的操作数据事实的生成式 AI 强化应用程序。
● 通过使用单个平台简化您的应用架构,该平台支持将应用和向量数据存储在同一位置,使用无服务器功能应对源数据的变化,并在多种数据模式中进行搜索,从而提高应用生成的响应的相关性和准确性。
● 凭借文档模型的灵活性,轻松开发生成式 AI 强化应用,同时维持简单、优质的开发者体验。
● 无缝集成领先的 AI 服务和系统(如超大规模服务提供商和开源 LLM 及框架),以在动态市场中保持竞争力。
● 在高性能、高度可扩展的操作数据库上构建生成式 AI 强化应用程序,该数据库在各种 AI 用例中经过了十年的验证。

虽然以上示例是构建更创新的应用所需的构建基块,但 MongoDB 可以帮助您实现从概念到生产再到扩展。

扫码加入钉群,与MongoDB专家一对一沟通,了解更多阿里云MongoDB产品与方案,市场活动及线上培训等内容。
4D23CF4C-EABF-40B3-80BE-5E4EDE071C42.png

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
3天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
66 48
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
2天前
|
人工智能 安全 测试技术
探索AI在软件开发中的应用:提升开发效率与质量
【10月更文挑战第31天】在快速发展的科技时代,人工智能(AI)已成为软件开发领域的重要组成部分。本文探讨了AI在代码生成、缺陷预测、自动化测试、性能优化和CI/CD中的应用,以及这些应用如何提升开发效率和产品质量。同时,文章也讨论了数据隐私、模型可解释性和技术更新等挑战。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
38 11
|
2天前
|
机器学习/深度学习 人工智能 算法
AI在医疗影像诊断中的应用与未来展望####
本文深入探讨了人工智能(AI)在医疗影像诊断领域的最新进展、当前应用实例及面临的挑战,并展望了其未来的发展趋势。随着深度学习技术的不断成熟,AI正逐步成为辅助医生进行疾病早期筛查、诊断和治疗规划的重要工具。本文旨在为读者提供一个全面的视角,了解AI如何在提高医疗效率、降低成本和改善患者预后方面发挥关键作用。 ####
|
2天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在金融领域的应用:智能投资顾问
【10月更文挑战第31天】随着AI技术的快速发展,智能投资顾问在金融领域的应用越来越广泛。本文介绍了智能投资顾问的定义、工作原理、优势及未来发展趋势,探讨了其在个人财富管理、养老金管理、机构风险管理及量化交易中的典型应用,并分析了面临的挑战与机遇。智能投资顾问以其高效、低成本、个性化和全天候服务的特点,正逐步改变传统投资管理方式。
|
6天前
|
人工智能 运维 NoSQL
云栖大会|多模+一体化,构建更高效的AI应用
在2024年云栖大会「NoSQL数据库」专场,多位知名企业和阿里云瑶池数据库团队的技术专家,共同分享了阿里云Lindorm、Tair、MongoDB和MyBase的最新进展与实践。Tair推出Serverless KV服务,解决性能瓶颈和运维难题;Lindorm助力AI和具身智能时代的多模数据处理;MongoDB云原生化提升开发效率;MyBase One打破云边界,提供云边端一体化服务。这些技术进展和最佳实践,展示了阿里云在NoSQL数据库领域的创新能力和广泛应用前景。
|
5天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
2天前
|
机器学习/深度学习 人工智能 搜索推荐
探索AI在医疗诊断中的革命性应用
【10月更文挑战第29天】 随着人工智能技术的飞速发展,其在医疗领域的应用已成为推动现代医疗服务创新的重要力量。本文旨在探讨AI技术如何在医疗诊断中发挥其独特优势,通过分析AI在影像诊断、疾病预测和个性化治疗计划制定等方面的应用案例,揭示AI技术如何提高诊断的准确性和效率,以及面临的挑战和未来发展趋势。
18 1
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
24 3