【算法与数据结构】深入解析二叉树(一)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 【算法与数据结构】深入解析二叉树(一)

📝数概念及结构

🌠 树的概念

数是一种非线性的数据结构,它是由n(n>=0)个有限节点组成一个具有层次关系的集合,把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。


  • 一个特殊的结点,称为根结点,根节点没有前驱结点
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

树的相关概念

  • 节点的度:一个节点含有子树的个数称为该节点的度;如上图:A的为6
  • 叶节点或终端节点:度为0的节点称为叶节点;如上图:B、C、H、I…等节点为叶节点
  • 非终端节点或分支节点:度不为0的节点;如上图:D、E、F、G…等节点为分支节点
  • 双亲节点或父节点:若一个节点包含子节点,则这个节点称其字节点的父节点;如上图:A是B的父节点
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;如上图:B是A的孩子节点
  • 兄弟节点:具有相同父节点互为兄弟节点;如图:B,C是兄弟节点
  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
  • 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
  • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
  • 森林:由m(m>0)棵互不相交的树的集合称为森林;

🌉树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; // 第一个孩子结点
 struct Node* _pNextBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据域
};

🌠 树在实际中的运用(表示文件系统的目录树结构)

Linux文件系统中也广泛使用树状图来表示和管理目录结构:Linux文件系统中的目录结构就是一棵树,根目录位于树的顶部,使用命令如tree、find等可以生成目录的树状图,清晰展示各目录和文件的包含关系。VFS(虚拟文件系统)层次结构也采用树形结构,不同文件系统作为树的分支,方便管理和扩展。

🌉二叉树概念及结构

🌠概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
  1. 二叉树的特点:
  2. 二叉树不存在度大于2的结点
  3. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

🌉数据结构中的二叉树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

🌠特殊的二叉树:

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

🌉 二叉树的性质

  • 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 个结点.
  • 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是是 2^h-1(注意是这里是-1+2 ^h)
  • 对任何一棵二叉树来说,如果:N0是度为0(叶结点)的节点个数N2是度为2(分支结点)的节点个数则有:**N0 = N2 + 1 **(N0(叶节点个数) + N2(分支节点个数) = 总节点数N)
  • 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log_2(n+1) = h (ps: 是log以2为底,n+1为对数)
  • 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有
  • 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
  • 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
  • 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

🌠二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

🌉 顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

🌠链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
 struct BinTreeNode* _pLeft; // 指向当前节点左孩子
 struct BinTreeNode* _pRight; // 指向当前节点右孩子
 BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
 struct BinTreeNode* _pParent; // 指向当前节点的双亲
 struct BinTreeNode* _pLeft; // 指向当前节点左孩子
 struct BinTreeNode* _pRight; // 指向当前节点右孩子
 BTDataType _data; // 当前节点值域
};

🌉 选择题

来趁热练铁吧,冲冲冲~

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199

解题思路:

总结点数为399个,度为2的结点数为199个,每个度为2的结点都有2个儿子,那么199个度为2的结点对应的子结点数为199*2=398,总结点数399,度为2结点对应的子结点数398,则叶子结点数为399-398=1

正确答案是B 200

2.下列数据结构中,不适合采用顺序存储结构的是( )
A 非完全二叉树
B 堆
C 队列
D 栈

顺序存储结构是指数据元素按顺序依次存储在连续的内存单元中。A 非完全二叉树:非完全二叉树采用顺序存储,会有很多空闲位置,存储效率不高。

正确答案是A

3.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2

完全二叉树的定义: 如果设二叉树深度为h,除最后一层外,其他各层节点数达到最大个数,最后一层所有结点从左到右排列,这就是完全二叉树。对于一个具有2n个结点的完全二叉树:除最后一层外,其他各层节点数都达到最大个数,即都是满的。最后一层可能不满,但结点从左到右排列。一个满二叉树的节点数为2h-1,这里树的深度h,使得2h-1<=2n<2h+1,即h=log2(2n)=log2n,除最后一层外共有log2n层,每层节点数为2h-1,共有log2n*(2h-1)=n个节点


最后一层节点数即为叶子节点数,为2n-n=n个


正确答案是A


🚩总结

相关文章
|
15天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
58 4
|
6天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
74 30
|
13天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
10天前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
63 15
|
21天前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
82 23
|
12天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
37 1
|
21天前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
72 4
|
27天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
1月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
50 5
|
1月前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
111 8

推荐镜像

更多