暗通道先验算法

简介: 暗通道先验算法

经典暗通道先验模型可以表示为:        


                                       I(x)=J(x)t(x) + A(1-t(x))


       这里I(x)为观察到的有雾图像,也就是我们所得的低质量图像,J(x)为无雾图像,A为大气光成分,为一常数 , t(x)为透射率(0,1)。

       其含义就是图像I(x)为事物反射的光经过雾气衰减后加上雾气反射的大气光的结合所成的像。作者根据对5000多幅无雾图像的暗通道图数据观察发现:约75%的像素值为0,且90%的像素点具有非常低的值,且集中在[0,16]。由此提出暗通道先验理论,即对于一副无雾图像,其暗通道可以表示为:                     eq.png

                           

  eq.png   表示J的任意一个颜色通道,Ω(x)表示在像素点x的窗口。

 根据暗通道先验理论得出:

                             

                                      eq.png

     

       为此我们通过计算去求解透射率 t(x):


       我们对大气散射模型公式(1)进行归一化处理;


                            eq.png


 这里我们假设大气光值A是已知的,并且透射率t(x)为常数,对上面公式的两边同时进行两次取最小值运算,可以得到下面式子:    

                                                            eq.png


 J(x)是代求的去雾图像,根据暗通道先验理论得:



                eq.png


由此可得


                            eq.png


将上述(8)式带入可得透射率t(x)得估计值:


                            eq.png


   在人们的日常生活中,众所周知,就算外面的天气晴朗无云,晴空万里,空气中还是会存在一些微小颗粒物的,当人们欣赏远处的物体时,总是能感受到雾的存在。同时,雾的存在会让人们感受到景深的存在,所以在去雾的同时也有必要保证一点雾的存在,使经去雾处理后得到的无雾图片看起来更加真实自然…。在这个过程中,我们通过引入一个 0 到 1 之间的因子w(传统暗通道先验去雾算法一文中w取值为0.95)对预估透射率t(x)进行修正,如式所示:


                                eq.png


       在图像中,雾浓度越低,其暗通道图越暗,像素点值越小;雾浓度越高,其暗通道图越亮,像素点值越大,因此,暗通道图可以较好的反映雾浓度信息。


       对于大气光值的选取方法有:先在暗通道图中选出图中前0.1%的像素值最大的像素点(这些像素点通常表示的是雾最不透明的点),这些像素点对应到有雾图像中,选取像素值最高的像素点作为大气光A。


       根据大气散射模型,将大气光A和t透射率带入式(1)可得到最终的复原场景:


                                         

                                eq.png

相关文章
|
机器学习/深度学习 算法 光互联
致敬何凯明的暗通道去雾算法 | NAS-Net: 基于非对齐监督的图像去雾框架
致敬何凯明的暗通道去雾算法 | NAS-Net: 基于非对齐监督的图像去雾框架
353 0
Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题
Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题
Matlab:单幅图象的暗原色先验去雾改进算法,能够很好地改进天空或明亮部分色彩失真问题
|
存储 移动开发 算法
OpenCV导向滤波(引导滤波)实现(Guided Filter)代码,以及使用颜色先验算法去雾
 论文下载地址:http://research.microsoft.com/en-us/um/people/jiansun/papers/GuidedFilter_ECCV10.pdf 本文主要介绍导向滤波,但是在网上看这算法还能去雾,不知道是具体是怎么利用导向滤波实现去雾的,希望过来人指点迷津,这块主要是重写了导向滤波应用于彩色图像的部分代码,希望与大家共同交流。
2247 0
|
13天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
10天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
15天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
18天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
26天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。