Flink CDC产品常见问题之flink集群jps命令报错如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

问题一:有人用过Flink CDC 3.0版本的整库同步吗?


有人用过Flink CDC 3.0版本的整库同步吗?我用Flink CDC3.0整库同步mysql到starRock提交任务异常,有人遇到过这个问题吗?


参考回答:

先保持原来的参数,任务写到另外的文件里。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592256


问题二:Flink CDC里 flink集群jps命令 报错怎么办?


Flink CDC里 flink集群jps命令 报错java.lang.OutOfMemoryError: unable to create new native thread 内存不足无法创建新的进程 我看了下机器内存情况 好像确实不多了 但是buffer 和available里面有 是不是没释放啊 ?


参考回答:

可能的原因

OutOfMemoryError: unable to create new native thread出现的情况有两种:

  1. 服务器剩余内存不足(非JVM内存),不能创建新的线程
  2. 超出服务器用户最大进程限制:
    ulimit -u。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592258


问题三:Flink CDC里 为啥cache会占用这么多内存? 怎么才能让他自动释放掉?


Flink CDC里 为啥cache会占用这么多内存? 怎么才能让他自动释放掉?


参考回答:

Apache Flink CDC(Change Data Capture)在处理数据流时可能会积累大量的内存,尤其是当捕获的数据量较大或处理过程中存在状态存储时。Flink CDC任务取消后,如果内存没有及时释放,可能是因为以下几个原因:

  1. 状态后置清理
  • Flink在取消任务后,会异步清理task的状态,包括checkpoint状态和managed memory中的数据结构。这部分清理过程可能需要一定时间,并且在极端情况下,可能不会立即回收所有内存。
  1. 堆外内存(Off-heap Memory)
  • 如果Flink作业使用了堆外内存(例如 RocksDB状态后端),内存释放可能更加复杂,因为它不受JVM垃圾回收机制管理,需要Flink自身去释放这部分资源。
  1. 资源泄漏
  • 如果存在资源泄露,如未能正确关闭网络连接、文件流或其他系统资源,可能导致内存无法正常释放。
  1. Flink内部缓存或队列
  • CDC组件可能在内部维护了一些缓存或者队列,即便任务取消,这些结构如果没有被正确清空或关闭,也可能导致内存占用较高。

解决Flink CDC内存占用过大的问题,可以尝试以下措施:

  • 等待资源释放:给Flink一段合理的时间自行清理资源。
  • 检查和优化状态后端配置:确保状态后端配置合理,例如 RocksDB的配置,包括内存大小和checkpoint策略。
  • 确认作业终止后状态清理:如果使用了checkpoint,确保作业在停止后完成了checkpoint的清理工作。
  • 排查是否存在资源泄漏:审查代码和配置,确保所有资源在任务取消或失败时都能得到妥善清理和关闭。
  • 手动触发GC:在诊断阶段,可以尝试触发Java垃圾收集器来回收堆内存,但这不是长期解决方案。
  • 重启TaskManager或整个集群:在必要时,重启受影响的TaskManager或整个Flink集群可以彻底释放资源,但这应该是最后的手段,因为会导致服务中断。

总的来说,优化Flink CDC内存管理的关键在于合理配置和有效监控任务运行状态。如果问题持续存在,建议深入分析Flink的日志和监控指标,以便定位具体的问题根源。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592260


问题四:Flink CDC里为什么我运行好了demo没有数据出来?


Flink CDC里为什么我运行好了demo没有数据出来?public class MySqlCDCSourceExample {

public static void main(String[] args) throws Exception {

MySqlSource mySqlSource = MySqlSource.builder()

.hostname("localhost")

.port(3306)

.databaseList("demo") // set captured database

.tableList("demo.answer_paper") // set captured table

.username("root")

.password("Hadoop.123456")

.deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String

.build();

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    // enable checkpoint
    env.enableCheckpointing(3000);
    env
            .fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source")
            // set 4 parallel source tasks
            .setParallelism(4)
            .print().setParallelism(1); // use parallelism 1 for sink to keep message ordering
    env.execute("Print MySQL Snapshot + Binlog");
}

}


参考回答:

根据cdc文档来部署。scan.startup.mode:initial。或者你设置下 startupOptions。

我用的是这个。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592263


问题五:Flink CDC里为什么这样写不生效?


Flink CDC里为什么这样写不生效?debezium.column.exclude.list。


参考回答:

试下column.exclude.list =schemaName.tb.column。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592264

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
16天前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
30 2
|
19天前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
18天前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
28 0
|
25天前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
105 0
|
28天前
|
Kubernetes Cloud Native 流计算
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
67 0
|
1月前
|
SQL 运维 数据管理
在对比其他Flink实时计算产品
在对比其他Flink实时计算产品
|
3月前
|
存储 SQL 关系型数据库
实时计算 Flink版产品使用问题之如何高效地将各分片存储并跟踪每个分片的消费位置
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
存储 SQL 监控
使用实践:对接Flink常见问题诊断
本文总结了Hologres对接Flink/Blink时的常见问题以及对应的诊断方法。
2061 1
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
4月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
811 7
阿里云实时计算Flink在多行业的应用和实践

相关产品

  • 实时计算 Flink版