机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析

简介: 机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析

一、引言

机器学习在当今社会扮演着日益重要的角色,但黑盒模型的不可解释性限制了其应用范围。因此,可解释性机器学习成为研究热点,有助于提高模型的可信度和可接受性。本文旨在探讨随机森林和fastshap作为可视化模型解析工具的应用,以帮助解释机器学习模型的决策过程和关键特征。通过对这两种方法的深入研究,可以更好地理解模型背后的逻辑,为进一步的应用提供指导。

二、可解释性机器学习的概念

可解释性对于机器学习模型至关重要,因为它有助于用户理解模型的决策过程、预测结果以及特征的重要性。在许多关键应用领域,如医疗诊断、金融风险评估和自动驾驶等,模型的可解释性对于决策者和相关利益相关者至关重要。通过了解模型背后的逻辑和推理过程,可以提高对模型预测的信任度,并且能够更好地发现模型的局限性和潜在的偏差,从而更好地应对不确定性。

然而,现有的可解释性方法存在一些局限性,例如针对复杂模型的解释性较差、解释结果的一致性问题以及解释结果的可信度等。因此,需要进一步研究和发展新的方法来解决这些问题,以提高机器学习模型的可解释性和可信度。

接下来我们将介绍随机森林和FastSHAP作为可解释性机器学习的工具,探讨它们如何应对现有方法的局限性并提供更好的模型解释能力。

三、fastshap方法简介

3.1 FastSHAP的工作原理和优势

FastSHAP是一种用于解释机器学习模型的可解释性方法,它基于SHAP(Shapley Additive Explanations)值的概念,并通过优化算法提高了计算效率和可扩展性。

FastSHAP的工作原理是通过对特征重要性进行评估,解释模型对每个特征的贡献。它使用了Shapley值的概念,Shapley值是一种博弈论中用于衡量参与者对协作价值的贡献的方法。在FastSHAP中,Shapley值被用来衡量每个特征对预测结果的影响程度。

FastSHAP的优势有以下几点:

  • 「高效计算」:FastSHAP通过优化算法,有效地减少了计算SHAP值所需的时间和资源。相比传统的计算方法,FastSHAP能够在可接受的时间内解释复杂模型。
  • 「可扩展性」:FastSHAP适用于各种类型的机器学习模型,包括神经网络、随机森林等。它具有很好的通用性,可以广泛应用于不同领域和问题。
  • 「解释性准确性」:FastSHAP提供了对模型预测结果解释的准确性和可信度。通过计算每个特征的SHAP值,可以了解到每个特征对预测结果的贡献程度,从而更好地理解模型的决策过程和关键特征。

3.2 FastSHAP在可解释性中的作用

在可解释性机器学习中,FastSHAP发挥着重要的作用。它可以帮助我们更好地了解机器学习模型的内部机制,解释其预测结果,并为决策者提供有针对性的洞察和决策依据。通过使用FastSHAP,我们能够提高模型的可解释性和可信度,从而推动机器学习在实际应用中的更广泛使用。

四、可视化模型解析

4.1 随机森林和FastSHAP模型解析思路

  1. 训练随机森林模型:首先,通过训练数据训练一个随机森林模型。
  2. 解释模型预测过程:使用FastSHAP方法来解释随机森林模型的预测过程。FastSHAP可以计算每个特征对于每个预测结果的SHAP值,从而揭示模型对每个特征的重要性和影响程度。
  3. 可视化解释结果:利用可视化工具,将FastSHAP计算得到的SHAP值可视化展示。这样可以直观地展示每个特征对于模型预测结果的影响,帮助用户理解模型的决策过程和关键特征。

4.2 可视化工具解释随机森林模型的预测过程和特征重要性

利用可视化工具解释随机森林模型的预测过程和特征重要性的步骤如下:

  1. 计算SHAP值:使用FastSHAP方法计算随机森林模型对于测试数据集中每个样本的SHAP值,得到每个特征对于每个样本的影响程度。
  2. 可视化特征重要性:通过柱状图或热力图等方式,将各个特征的SHAP值可视化展示,以展示它们对于模型预测的重要性程度。
  3. 可视化预测过程:选取几个样本,展示它们的特征取值和对应的SHAP值,以说明模型是如何基于这些特征值进行预测的

五、实例演示

  • 「数据集准备」
library(survival)
head(gbsg)

结果展示:

pid age meno size grade nodes pgr er hormon rfstime status
1  132  49    0   18     2     2   0  0      0    1838      0
2 1575  55    1   20     3    16   0  0      0     403      1
3 1140  56    1   40     3     3   0  0      0    1603      0
4  769  45    0   25     3     1   0  4      0     177      0
5  130  65    1   30     2     5   0 36      1    1855      0
6 1642  48    0   52     2    11   0  0      0     842      1
  • 「示例数据集介绍」
> str(gbsg)
'data.frame':   686 obs. of  10 variables:
 $ age    : int  49 55 56 45 65 48 48 37 67 45 ...
 $ meno   : int  0 1 1 0 1 0 0 0 1 0 ...
 $ size   : int  18 20 40 25 30 52 21 20 20 30 ...
 $ grade  : int  2 3 3 3 2 2 3 2 2 2 ...
 $ nodes  : int  2 16 3 1 5 11 8 9 1 1 ...
 $ pgr    : int  0 0 0 0 0 0 0 0 0 0 ...
 $ er     : int  0 0 0 4 36 0 0 0 0 0 ...
 $ hormon : int  0 0 0 0 1 0 0 1 1 0 ...
 $ rfstime: int  1838 403 1603 177 1855 842 293 42 564 1093 ...
 $ status : Factor w/ 2 levels "0","1": 1 2 1 1 1 2 2 1 2 2 ...
age:患者年龄
meno:更年期状态(0表示未更年期,1表示已更年期)
size:肿瘤大小
grade:肿瘤分级
nodes:受累淋巴结数量
pgr:孕激素受体表达水平
er:雌激素受体表达水平
hormon:激素治疗(0表示否,1表示是)
rfstime:复发或死亡时间(以天为单位)
status:事件状态(0表示被截尾,1表示事件发生)
  • 「划分训练集和测试集」
# 划分训练集和测试集
set.seed(123)
data <- gbsg[,c(-1)]
# 划分训练集和测试集
set.seed(123)
train_indices <- sample(x = 1:nrow(data), size = 0.7 * nrow(data), replace = FALSE)
test_indices <- sample(setdiff(1:nrow(data), train_indices), size = 0.3 * nrow(data), replace = FALSE)
train_data <- data[train_indices, ]
test_data <- data[test_indices, ]
  • 「模型拟合」
library(randomForest)
rf <- randomForest(status~., data=train_data)
  • 「模型评估」
library(pROC)
# 获取模型预测的概率
pred_prob <- predict(rf, newdata = test_data, type = "class")
# 计算真阳性率和假阳性率
roc <- pROC::roc(test_data$status, pred_prob)
# 绘制ROC曲线
plot(roc, main = "ROC Curve", print.auc = TRUE, auc.polygon = TRUE, grid = TRUE, legacy.axes = TRUE,col="blue")
# 绘制特征重要性图
varImpPlot(rf)


  • 「shap分析」
library(fastshap)
shap <- explain(rf,X=train_data[,-10],nsim=10,
        pred_wrapper = function(model,newdata){
           predict(rf, newdata = newdata, type = "class")
        })
library(magrittr)
library(tidyverse)
shap_handle <- shap %>% as.data.frame() %>% mutate(id=1:n()) %>% pivot_longer(cols = -(ncol(train_data[,-10])+1),values_to="shap") # 长宽数据转换
shap_handle
data2 <- train_data %>% mutate(id=1:n()) %>% pivot_longer(cols = -(ncol(train_data[,-10])+1))
# 开始画图
shap_scale <- shap_handle %>% rename("feature"
="name")%>%
group_by(feature)%>%
mutate(value=(value-min(value))/(max(value)-min(value)))
shap_scale <- shap_handle %>%
left_join(data2)%>%
rename("feature"
="name")%>%
group_by(feature)%>%
mutate(value=(value-min(value))/(max(value)-min(value))) %>% sample_n(200)
ggplot(data=shap_scale, aes(x=shap, y=feature, color=value)) +
  geom_jitter(size=2, height=0.1, width=0) +
  scale_color_gradient(low="#FFCC33", high="#6600CC", breaks=c(0, 1), labels=c("Low", "High"), 
                       guide=guide_colorbar(barwidth=2, barheight=30), 
                       name="Feature value", 
                       aesthetics = c("color")) +
  theme_bw()

结果展示:

# A tibble: 4,320 × 3
      id name       value
   <int> <chr>      <dbl>
 1     1 age     -0.00320
 2     1 meno    -0.00201
 3     1 size    -0.0711 
 4     1 grade   -0.0336 
 5     1 nodes   -0.126  
 6     1 pgr     -0.0308 
 7     1 er       0.0160 
 8     1 hormon   0.00211
 9     1 rfstime -0.189  
10     2 age      0.00561
# ℹ 4,310 more rows
# ℹ Use `print(n = ...)` to see more rows

六、结论

随机森林和FastSHAP在可解释性机器学习中具有重要作用,并有着许多优势和应用前景。以下是它们的优势以及在可解释性机器学习中的应用前景的总结:

  • 「随机森林的优势」

  1. 随机森林是一种集成学习方法,能够处理高维数据和大规模数据集,具有很好的准确性和鲁棒性。 随机森林可以输出特征重要性,帮助用户理解模型的决策过程和关键特征。
  2. 随机森林对于缺失值和异常值具有较好的容忍性,不需要对数据进行过多的预处理。
  • 「FastSHAP的优势」

  1. astSHAP通过优化算法提高了计算效率和可扩展性,适用于各种类型的机器学习模型。
  2. FastSHAP提供了对模型预测结果解释的准确性和可信度,帮助用户深入理解模型的决策过程。

在可解释性机器学习中,随机森林和FastSHAP的结合可以帮助用户更好地理解复杂模型的预测过程、特征重要性和决策依据,从而提高模型的可解释性和可信度。未来在可解释性机器学习领域的研究方向和发展趋势可能包括:

  1. 提高解释性方法的效率和可扩展性,使其能够适用于更复杂的模型和大规模数据集。
  2. 探索新的解释性方法,结合人类可理解的解释形式,使得解释更加直观和易于理解。
  3. 深入研究模型的不确定性估计和可信度评估,为决策者提供更全面的信息和决策支持。
  4. 推动可解释性机器学习在实际应用中的广泛应用,促进人工智能技术的可持续发展和应用落地。

随机森林和FastSHAP作为可解释性机器学习领域的重要工具和方法,将继续发挥重要作用,并在未来的研究和应用中持续展现出潜力和价值。

目录
相关文章
|
3月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
761 109
|
4月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
330 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
5月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
402 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
4月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
5月前
|
机器学习/深度学习 人工智能 算法
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。
|
5月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
5月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
6月前
|
存储 人工智能 运维
企业级MLOps落地:基于PAI-Studio构建自动化模型迭代流水线
本文深入解析MLOps落地的核心挑战与解决方案,涵盖技术断层分析、PAI-Studio平台选型、自动化流水线设计及实战构建,全面提升模型迭代效率与稳定性。
259 6
|
5月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。

推荐镜像

更多
  • DNS