【十九】初学Kafka并实战整合SpringCloudStream进行使用

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 【十九】初学Kafka并实战整合SpringCloudStream进行使用


       前面简单学习了通过rabbitMQ来实现消息队列的功能,本章初学一下Kafka,并实现消息发送方发送消息到多个主题(Topic),然后消费者服务进行订阅的demo。

       通过网络学习,发现通过SpringCloudStream来使用微服务的kafa比较简单,本章将通过使用SpringCloudStream的方式来使用Kafka,下面开始学习。

       本文为了简单操作,使用的windows版本,linux版本后续学习之后再写。

一、下载安装Kafka

       要进行kafka的学习,首先肯定得安装kafka了。安装地址如下:

Apache Kafka

       很慢,可以去找百度云资源。

       1、下载Scala版本的,可以直接使用。 ,然后点击链接进行下载。

       2、解压后得到如下:

       3、进入kafka安装目录:

       4、执行命令启动zookeeper和kafka,需要先启动zookeeper,再启动kafka(kafka安装后,默认带了一个zookeeper) ,都有一套默认配置,此处就不修改配置了,直接使用默认配置启动,命令如下:

启动zookeeper:

bin\windows\zookeeper-server-start.bat config\zookeeper.properties

启动kafka:

bin\windows\kafka-server-start.bat config\server.properties

注意:是在bin目录上级执行的。此处是在windows上的启动命令,linux的不一样,后面有机会再学习。

       表示两者已经启动成功了,下面可以开启构建项目了。

       注意:zookeeper默认占用端口号:2181,kafka占用9092,注意跑之前看看端口是否被占用,否则出现端口冲突问题。

二、构建父子工程

       为了测试消费者服务和生产者服务,所以父子工程就长这样:

       上次整合RabbitMQ时就建立了这个,此处直接拿来用了。

三、使用SpringCloudStream默认的信道实现消息传递

       下面通过SpringCloudSteam实现Kafka,最基本的一个使用流程,差不多是下面这个样子(可能描述不准确):

       如图可知,大概的一个流程就是(只学习了最基本的使用):

  • 构建消息生产者
  • 指定消息输入通道,并指定该通道指向的Topic
  • 构建消息消费者
  • 指定消息输出通道,并指定该通道订阅哪一个Topic
  • 构建消费者监听器,监听指定的输出通道,并获取消息进行消费

       大概流程就是这样,下面开始具体操作。

       本节实现功能:生成订单时,创建订单记录并通知买家(通过邮件和短信)。

       先准备“构建材料”,在父模块引入所需jar包:

<dependency>
     <groupId>org.springframework.cloud</groupId>
     <artifactId>spring-cloud-starter-stream-kafka</artifactId>
     <version>3.0.3.RELEASE</version>       
</dependency>

       增加这一个Jar包即可。

      重点!!!:此处有个大坑,仍旧是版本问题,我目前的版本是这样的(这种我自己没问题):

       2.3.*和3.0.*,试了很多版本组合都会运行时报错,不是找不到这个类就是找不到哪个类,后面再去研究一下版本匹配问题。

3.1 构建生产者服务

       依赖导入完成就开始构建生产者服务。

       3.1.1 修改配置文件

       主要是绑定SpringCloudStream的输入信道以及指定kafka的服务器地址。

       上图的output是Stream自带的消息输入信道,从最开始的流程图可以得知,需要新建topic和信道的绑定关系,上图的意思就是在output信道绑定上stream-demo这个topic,content-type是指发送的消息的格式,若想在消费端进行消息类型的转换,最好使用application/json类型。

       注意:上图的output输入信道是stream自带的,还自带了一个输出信道input。

       所以可以直接使用这两个通道。

       3.1.2 新增发送消息服务类

       新增一个发送消息的服务类,如下:

       注释的代码不需要管,后面才用到。通过EnableBinding注解绑定Source类(自带的那个消息输入通道)。

       调用source的output方法下的send方法发送一个Message类型的消息。

       消息消费者服务接受的会是一个String类型的消息。

       3.1.3 新增controller进行接口测试

       新增一个controller,写一个订单生成接口,如下:

       在此接口调用消息发送者服务写的发送消息方法,发送消息。

3.2 构建消费者服务

       3.2.1 修改配置文件

       此处绑定输出通道和Topic的关系,上图表示使用默认的input消息输出信道绑定demo这个Topic,监听input这个信道就可以获取demo中的消息了,下面创建监听器。

      3.2.2 新建短信处理监听类

       通过EnableBinding注解,将该类绑定默认的Sink类

       该类的信道名称是input。

       通过StreamListener注解,监听topic中获取到的消息,并进行处理消费。

      3.2.3 新建邮件处理监听类

       同上面的一样。

       启动两个服务,进行演示,结果如下:

       消费者服务已经获取到了生产者服务通过Topic发送的消息。

四、使用自定义信道(和发送消息体)实现消息传递

       上述代码实现的是通过stream默认的信道实现的,本节实现通过自定义信道实现,除了邮件和短信处理外,额外新增一个操作(通过新的信道)实现。上述代码可以发现,消费者服务接收到的消息是String类型的,若想发送和接受自定义的类型,本节也进行实现。

       本节实现功能:生成订单时,创建订单记录并通知买家(通过邮件和短信),然后额外短信通知买家购买的东西是什么。

4.1 构建公共模块

       4.1.1 构建自定义信道接口

       由于本章节要实现自定义信道的功能,所有需要模仿stream自带的Sink接口和MySource接口写自己的自定义信道接口,再由于这部分代码会在消费者服务和生产者服务都有用到,直接将该两个接口写在common公共类里面,如下:

       4.1.2 自定义消息体

       此处特别讲一个自定义消息体,找了一些文章没有发现一个简单的方式实现自定义消息体,结果捣鼓捣鼓发现实现springboot提供的Message接口即可,如下:

       因为发送消息的send方法的入参必须是一个Message类的泛型类。

       如此这般,common就结束了,下面整改生产者和消费者服务。

4.2 构建生产者服务

       4.2.1 修改配置文件

       对比上面一小节,本小结在配置中新增了一个绑定,就是关于自定义的output1这个信道的绑定,翻翻上面可以看到自定义的传入信道接口类信道名称叫做input1,所以此处保持一致,然后将该信道的消息发送到demo1这个topic。

       4.2.2 修改消息发送服务类

       修改该类,EnableBinding注解的值改为绑定多个传入信道接口。

       再调用自定义的传入信道接口的send方法发送消息。

       此处的sendMsg方法的入参改为自定义的消息体。

4.3 构建消费者服务

       4.3.1 修改配置文件

       让自定义的名字叫input1的这个传出信道去绑定demo1这个topic,让他可以获取topic1里面的消息,后面再监听input1这个出口即可。

       4.3.2 新增额外处理的监听器

       监听input1这个出口。

       对比前面两个监听器,此处使用EnableBinding注解绑定的是自定义的传入信道,然后再通过StreamListener注解,去监听这个传出信道进出消息消费,逻辑处理。

       此处的方法接收到的数据可以通过json转换成自定义消息体的消息。(注意,消息生产者一定是要通过content-type: application/json 这种格式发送的消息才可以进行json转换)。

       然后重启provider和consumer两个服务,记得要重新编译common模块,因为改了common模块的东西,然后另外两个模块又使用了它。调用测试接口进行效果演示,如下:

       可以看到新增的监听器成功监听到了来自自定义信道的消息,并且接收到的消息也成功转成了自定义消息体。

目录
相关文章
|
8月前
|
消息中间件 缓存 Java
✈️【Kafka技术专题】「开发实战篇」深入实战探索Kafka的生产者的开发实现及实战指南
✈️【Kafka技术专题】「开发实战篇」深入实战探索Kafka的生产者的开发实现及实战指南
85 0
|
2月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
102 5
|
3月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
57 3
|
5月前
|
消息中间件 Java Kafka
"Kafka快速上手:从环境搭建到Java Producer与Consumer实战,轻松掌握分布式流处理平台"
【8月更文挑战第10天】Apache Kafka作为分布式流处理平台的领头羊,凭借其高吞吐量、可扩展性和容错性,在大数据处理、实时日志收集及消息队列领域表现卓越。初学者需掌握Kafka基本概念与操作。Kafka的核心组件包括Producer(生产者)、Broker(服务器)和Consumer(消费者)。Producer发送消息到Topic,Broker负责存储与转发,Consumer则读取这些消息。首先确保已安装Java和Kafka,并启动服务。接着可通过命令行创建Topic,并使用提供的Java API实现Producer发送消息和Consumer读取消息的功能。
96 8
|
7月前
|
消息中间件 存储 Kafka
go语言并发实战——日志收集系统(二) Kafka简介
go语言并发实战——日志收集系统(二) Kafka简介
142 1
|
7月前
|
消息中间件 算法 Java
go语言并发实战——日志收集系统(三) 利用sarama包连接KafKa实现消息的生产与消费
go语言并发实战——日志收集系统(三) 利用sarama包连接KafKa实现消息的生产与消费
150 0
|
8月前
|
消息中间件 存储 Kafka
【深入浅出 RocketMQ原理及实战】「底层源码挖掘系列」透彻剖析贯穿一下RocketMQ和Kafka索引设计原理和方案
【深入浅出 RocketMQ原理及实战】「底层源码挖掘系列」透彻剖析贯穿一下RocketMQ和Kafka索引设计原理和方案
147 1
|
8月前
|
消息中间件 监控 Java
✈️【Kafka技术专题】「核心原理篇」深入实战探索Kafka的Broker的原理及可靠性机制分析
✈️【Kafka技术专题】「核心原理篇」深入实战探索Kafka的Broker的原理及可靠性机制分析
248 0
|
8月前
|
消息中间件 网络协议 Kafka
docker安装zk和kafka实战笔记
docker安装zk和kafka实战笔记
139 0
docker安装zk和kafka实战笔记

热门文章

最新文章