2024年3月最新的深度学习论文推荐

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 现在已经是3月中旬了,我们这次推荐一些2月和3月发布的论文。

Why do Learning Rates Transfer? Reconciling Optimization and Scaling Limits for Deep Learning.

https://arxiv.org/abs/2402.17457

学习速率为什么会迁移?本研究试图从理论上解释MuP超参数传递的成功之处。根据其创作者的说法,训练损失的Hessian矩阵的最大特征值不受网络深度或广度的影响。

CricaVPR: Cross-image Correlation-aware Representation Learning for Visual Place Recognition.

https://arxiv.org/abs/2402.19231v1

CricaVPR提出了一种视觉位置识别的交叉图像相关感知表征学习的方法,专注于许多照片之间的关系,即使它们是在各种情况下拍摄的,以提高视觉位置识别。

Empowering Large Language Model Agents through Action Learning.

https://arxiv.org/abs/2402.15809

通过动作学习增强大型语言模型代理的能力。使用迭代学习策略研究语言代理的开放动作学习,该策略使用Python函数来创建和改进动作;在每次迭代中,提出的框架(LearnAct)根据执行反馈对可用动作进行修改和更新,扩大动作空间,提高动作有效性;LearnAct框架在机器人规划和AlfWorld环境中进行了测试,与ReAct+ reflection相比,AlfWorld中的代理性能提高了32%。

PlanGPT: Enhancing Urban Planning with Tailored Language Model and Efficient Retrieval.

https://arxiv.org/abs/2402.19273

基于定制语言模型和高效检索的城市规划。演示了如何使用llm集成几种方法,如检索增强、微调、工具利用等;虽然建议的框架是在城市和空间规划的背景下使用的,但许多见解和有用的建议也适用于其他领域。

Resonance RoPE: Improving Context Length Generalization of Large Language Models.

https://arxiv.org/abs/2403.00071

改进大型语言模型的上下文长度泛化。为了帮助LLM理解和生成比最初训练时更长的文本序列,研究人员创造了一种名为RoPE的新方法。通过使用更少的处理能力,方法优于当前的旋转位置嵌入(RoPE)技术,并提高了冗长文本的模型性能。

The All-Seeing Project V2: Towards General Relation Comprehension of the Open World.

https://arxiv.org/abs/2402.19474v1

对开放世界的一般关系理解。All-Seeing Project V2引入了ASMv2模型,它混合了文本生成、对象定位和理解图像中对象之间的联系。

Stable Diffusion 3

https://stability.ai/news/stable-diffusion-3-research-paper

最新的SD3优于DALL·e3、Midjourney v6,新的多模态扩散Transformer(Multimodal Diffusion Transformer, MMDiT)架构为图像和语言表示使用独立的权重集,与以前版本的SD3相比,这提高了文本理解和拼写能力。

Vision-RWKV: Efficient and Scalable Visual Perception with RWKV-Like Architectures.

https://arxiv.org/abs/2403.02308v1

基于RWKV-Like架构的高效可扩展视觉感知。vision -RWKV通过修改NLP的RWKV架构来进行计算及视觉的任务,为高分辨率图像处理提供了有效的解决方案。

Design2Code

https://arxiv.org/abs/2403.03163

我们离自动化前端工程还有多远?使用设计图并将其转化为代码是很困难的。论文将18B模型作为基线,评估表明gpt - 4v生成的代码有时比人工合成的代码更受欢迎。

https://avoid.overfit.cn/post/8a1f17f10c7f43ec93afb3abd0f3a14c

目录
相关文章
|
8月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【论文精读】TNNLS 2022 - 基于深度学习的事件抽取研究综述
【论文精读】TNNLS 2022 - 基于深度学习的事件抽取研究综述
|
3月前
|
机器学习/深度学习 自然语言处理 算法
深度学习-生成式检索-论文速读-2024-09-14(下)
深度学习-生成式检索-论文速读-2024-09-14(下)
109 0
|
3月前
|
机器学习/深度学习 存储 自然语言处理
深度学习-生成式检索-论文速读-2024-09-14(上)
深度学习-生成式检索-论文速读-2024-09-14(上)
76 0
|
3月前
|
机器学习/深度学习 搜索推荐 算法
深度学习-点击率预估-研究论文2024-09-14速读
深度学习-点击率预估-研究论文2024-09-14速读
54 0
|
8月前
|
机器学习/深度学习 编解码 人工智能
2024年2月深度学习的论文推荐
我们这篇文章将推荐2月份发布的10篇深度学习的论文
277 1
|
机器学习/深度学习 自然语言处理 算法
【论文精读】TNNLS 2022 - 基于深度学习的事件抽取研究综述
事件抽取是从海量文本数据中快速获取事件信息的一项重要研究任务。随着深度学习的快速发展,基于深度学习技术的事件抽取已成为研究热点。文献中提出了许多方法、数据集和评估指标,这增加全面更新调研的需求。
624 0
|
机器学习/深度学习 编解码 固态存储
深度学习论文阅读目标检测篇(五)中文版:YOLOv2《 YOLO9000: Better, Faster, Stronger》
 与分类和标记等其他任务的数据集相比,目前目标检测数据集是有限的。最常见的检测数据集包含成千上万到数十万张具有成百上千个标签的图像[3][10][2]。分类数据集有数以百万计的图像,数十或数十万个类别[20][2]。
178 0
深度学习论文阅读目标检测篇(五)中文版:YOLOv2《 YOLO9000: Better, Faster, Stronger》
|
机器学习/深度学习 自然语言处理
十年来论文量激增,深度学习如何慢慢推开数学推理的门(2)
十年来论文量激增,深度学习如何慢慢推开数学推理的门
124 0
|
机器学习/深度学习 消息中间件 人工智能
十年来论文量激增,深度学习如何慢慢推开数学推理的门(1)
十年来论文量激增,深度学习如何慢慢推开数学推理的门
233 0
|
机器学习/深度学习 自然语言处理 算法