m基于深度学习的32QAM调制解调系统相位检测和补偿算法matlab仿真

简介: m基于深度学习的32QAM调制解调系统相位检测和补偿算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
随着通信技术的飞速发展,高阶调制格式如32QAM(32-Quadrature Amplitude Modulation,32进制正交幅度调制)在高速数据传输中得到了广泛应用。然而,由于信道失真、噪声干扰等因素,接收端往往面临相位偏移和信号失真等问题。为了解决这些问题,基于深度学习的相位检测和补偿算法应运而生。

2.1 32QAM调制解调原理
在32QAM中,信号是通过同时改变两个正交载波(I路和Q路)的幅度来实现信息编码的。这两个载波的频率相同但相差90度相位。具体过程如下:

比特映射: 输入的6比特流被映射到32个离散的星座点上。每个星座点都有一个对应的二进制序列。

符号生成: 根据映射表,将每组6比特转换为相应的复数符号,这个符号包含有实部(I分量)和虚部(Q分量)。

s=I+jQs = I + jQs=I+jQ

其中,sss 是调制符号,III 和 QQQ 分别代表对应星座点的横纵坐标值。

幅度与相位调制: 通过对基带信号进行上变频并乘以相应的幅度因子,得到最终的模拟调制信号。

2.2 基于深度学习的相位检测和补偿算法
为了解决相位偏移问题,可以采用基于深度学习的相位检测和补偿算法。该算法通常包括两个主要步骤:相位检测和相位补偿。

   相位检测的目标是从接收到的信号中估计出相位偏移量。传统的方法通常基于最大似然估计或最小均方误差准则进行设计,但在复杂信道条件下性能受限。而基于深度学习的方法则能够通过学习大量数据来自动提取特征并进行相位偏移量的估计。

   具体来说,可以采用一个深度神经网络(DNN)来实现相位检测。该网络的输入是接收到的信号样本,输出是估计的相位偏移量。网络的结构可以根据具体任务进行设计,例如可以使用卷积神经网络(CNN)来提取信号的时域特征,或者使用循环神经网络(RNN)来处理序列数据。

   在训练阶段,需要准备大量带有标签的训练数据。标签是真实的相位偏移量,可以通过仿真或实际测量得到。然后,使用反向传播算法等优化方法来训练网络参数,使得网络能够准确地从输入信号中估计出相位偏移量。
   相位补偿的目标是根据估计出的相位偏移量对接收到的信号进行校正,以消除相位偏移的影响。传统的补偿方法通常是通过旋转接收到的信号来实现的。而在基于深度学习的算法中,可以将相位补偿过程集成到神经网络中。

     在得到较为准确的相位估计后,利用该信息对原始接收到的信号进行相位补偿。假设经过深度学习网络得到的相位估计为:



   具体来说,可以在神经网络的输出端添加一个旋转矩阵,该矩阵根据估计出的相位偏移量对接收到的信号进行旋转校正。这样,神经网络的输出就是经过相位补偿后的信号,可以直接用于后续的解调处理。

3.MATLAB核心程序
```for i = 1:length(SNR)
i
for j = 1:10
[i,j]
%产生信号
signal = round(rand(1,LEN));
signal_modulated1 = Modulator(signal,K);
signal_receive1 = awgn(signal_modulated1,SNR(i),'measured');
signal_receive2 = signal_receive1exp(sqrt(-1)phase);

    offset2   = func_phase_est_dnn(signal_receive2);%基于深度学习的相位估计

    RR        = signal_receive2*exp(-sqrt(-1)*mean2(offset2));
    %加相位补偿
    output    = DeModulator(RR,K);

    msgr      = ones(size(output));
    idx       = find(output<=0);
    msgr(idx) = 0;

    len         = length(find(signal==msgr));
    errrate(i,j)= 1-len/length(signal);
    %没有相位补偿
    output2     = DeModulator(signal_receive2,K);

    msgr2       = ones(size(output2));
    idx2        = find(output2<=0);
    msgr2(idx2) = 0;

    len2      = length(find(signal==msgr2));
    errrate2(i,j)= 1-len2/length(signal);

end

end

figure;
semilogy(SNR,mean(errrate2,2),'b-o');
hold on
semilogy(SNR,mean(errrate,2),'r-s');
grid on
xlabel('SNR');
ylabel('误码率');
legend('32QAM无相位补偿误码率','32QAM相位补偿误码率');
```

相关文章
|
17天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
2天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
3天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
3天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
18 3
|
14天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
9天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
55 9